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Reliable Crowdsourcing and Deep Locality-
Preserving Learning for Unconstrained

Facial Expression Recognition
Shan Li and Weihong Deng , Member, IEEE

Abstract— Facial expression is central to human experience,
but most previous databases and studies are limited to posed
facial behavior under controlled conditions. In this paper,
we present a novel facial expression database, Real-world Affec-
tive Face Database (RAF-DB), which contains approximately
30 000 facial images with uncontrolled poses and illumina-
tion from thousands of individuals of diverse ages and races.
During the crowdsourcing annotation, each image is indepen-
dently labeled by approximately 40 annotators. An expectation–
maximization algorithm is developed to reliably estimate the
emotion labels, which reveals that real-world faces often express
compound or even mixture emotions. A cross-database study
between RAF-DB and CK+ database further indicates that
the action units of real-world emotions are much more diverse
than, or even deviate from, those of laboratory-controlled emo-
tions. To address the recognition of multi-modal expressions in
the wild, we propose a new deep locality-preserving convolutional
neural network (DLP-CNN) method that aims to enhance the
discriminative power of deep features by preserving the locality
closeness while maximizing the inter-class scatter. Benchmark
experiments on 7-class basic expressions and 11-class compound
expressions, as well as additional experiments on CK+, MMI,
and SFEW 2.0 databases, show that the proposed DLP-CNN
outperforms the state-of-the-art handcrafted features and deep
learning-based methods for expression recognition in the wild.
To promote further study, we have made the RAF database,
benchmarks, and descriptor encodings publicly available to the
research community.

Index Terms— Expression recognition, basic emotion, com-
pound emotion, deep learning.

I. INTRODUCTION

AUTOMATIC facial expression recognition has made sig-
nificant progress in the past two decades [56], [78]. How-

ever, many developed frameworks have been employed strictly
on the data collected under controlled laboratory settings with
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frontal faces, uniform illumination and posed expressions.
On the other hand, a massive amount of images from different
events and social gatherings in unconstrained environments
have been captured by users from real world [15], [60].
The design of systems capable of understanding the commu-
nity perception of emotional attributes and affective displays
from social images is receiving increasing interest. Fortu-
nately, the emerging deep learning techniques have advanced
unconstrained expression recognition to a new state-of-the-
art [31], [45]. However, to automatically infer the affective
state of facial images, databases that contain large-scale valid
samples and can simultaneously reflect the characteristic of
real-world expressions are urgently needed.

Although Internet users [1], [6], [36], [69] provide an
abundant data source for unconstrained expressions, the com-
plexity of emotion categories annotation has hindered the
collection of large annotated databases. In particular, popular
AU coding [17] requires specific expertise to take months to
learn and be perfected. In addition, due to cultural differences
in the perception of facial emotion [18], it is difficult for
psychologists to define definite prototypical AUs for each
facial expression. Therefore, it is also worth to study the
emotion of social images based on the judgments of a large
common population by crowdsourcing [10], rather than the
professional knowledge of a few experts.

Motivated by these observations, we investigate human
perception and automatic recognition of unconstrained facial
expressions via crowdsourcing and deep learning techniques.
To this end, we have collected a large-scale, diverse, and
reliably annotated facial expression database in the wild, Real-
world Affective Face Database (RAF-DB).1 During annotation,
315 well-trained annotators are asked to label facial images
with one of seven basic categories [16], and each image is
independently annotated enough times, i.e., around 40 times
in our experiment. The contributions of this paper are fourfold:

First, to enhance the readability of the label estimation,
we develop an EM-based reliability estimation algorithm to
evaluate the professionalism level of each labeler and then
filter out the noisy labels, enabling each image to be repre-
sented reliably by a 7-dimensional emotion probability vector.
By analyzing 1.2 million labels of 29,672 highly diverse facial
images downloaded from the Internet, we find that real-world

1http://www.whdeng.cn/RAF/model1.html
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Fig. 1. Examples of aligned images under real-world conditions (RAF-DB
in (a)) and laboratory environments (JAFFE, CK+ and Multi-PIE in (b)).
Images provided in RAF-DB are of great variability in subjects’ age, gender
and ethnicity, head poses, lighting conditions, occlusions (e.g., glasses, facial
hair or special gestures that hide some of the feature points), post-processing
operations (e.g., various filters and special effects), etc.

affective faces are naturally categorized into two types: basic
expressions with single-modal distributions and compound
emotions with bimodal distributions. This observation supports
a recent finding in the lab-controlled condition [14]. To the best
of our knowledge, the real-world expression database RAF-DB
is the first large-scale database to provide reliable labels of
common expression perception and compound emotions in an
unconstrained environment.

Second, to investigate differences between expressions cap-
tured under controlled and unconstrained conditions, we con-
duct a cross-database study between CK+ [46] (the most
popular expression benchmark database defined by psychol-
ogists) and our RAF-DB. The expression recognition results,
as well as the manual AU inspections, reveal that the AUs
of real-world expressions are different from and much more
diverse than those of lab-controlled expressions, as illustrated
in Fig. 7. Due to these difficulties, as well as large varia-
tions in pose, illumination, and occlusion, traditional hand-
crafted features or shallow-learning-based features, which are
well-established in lab-controlled datasets, fail to recognize
facial expressions under unconstrained conditions.

Third, to improve the CNN based expression recogni-
tion, we propose a novel deep learning based framework,
Deep Locality-preserving CNN (DLP-CNN). Inspired by [26],
we develop a practical backpropagation algorithm that adapts
the seminal idea of local neighbors from “shallow” learning
to a new deep feature learning approach by creating a locality
preserving loss (LP loss) which aims to pull the locally
neighboring faces of the same class together. Jointly trained
with the classical softmax loss which forces different classes
to stay apart, locality preserving loss drives the intra-class
local clusters of each class to become compact, thus highly
enhancing the discriminative power of the deeply learned
features. Moreover, locally neighboring faces tend to share
similar emotion intensity by using DLP-CNN, which can
derive discriminative deep features with smooth emotion inten-
sity transitions. To the best of our knowledge, this is the first

attempt to use such a loss function to help to supervise the
learning of CNNs, thereby achieving enhanced discriminating
power compared to the up-to-date approaches and setting a
new state-of-the-art for expression recognition in-the-wild.

Finally, to facilitate the translation of the research from the
laboratory environment to the real world, we have defined
two challenging benchmark experiments on RAF-DB: 7-class
basic expression classification and 11-class compound expres-
sion classification. We also conduct extensive experiments on
RAF-DB and other related databases. The comparison results
show that the proposed DLP-CNN outperforms handcrafted
features and other state-of-the-art CNN methods. Moreover,
the activation features trained on RAF-DB can be repurposed
to new databases with small-sample training data, suggest-
ing that the DLP-CNN is a powerful tool to handle the
cross-culture problem on perception of emotion (POE).

This journal paper is an extended version of the conference
paper [39] of CVPR 2017. The new content in this paper
includes a detailed discussion of existing expression image
databases, a comparative facial action coding system (FACS)
analysis of CK+ and RAF-DB, a shape feature learning
method for the baseline of RAF-DB and a comparative study
of the proposed deep learning method on other three com-
mon databases. The remainder of this paper is structured
as follows. In the next section, we briefly review related
work on expression database and recognition methods. Then,
we introduce the details of the construction of RAF-DB
and the cross-database study between CK+ and RAF-DB in
Section III. In Section IV, we introduce our new DLP-CNN
approach in detail. Additionally, we include the experimental
results of the baseline and DLP-CNN in Section V. Finally,
we conclude and discuss future work.

II. RELATED WORK

We first discuss related expression image datasets and then
review the generic framework for facial expression analysis.
Moreover, because the deep learning technique has achieved
state-of-the-art performance in the field of image processing,
we investigate several existing deep learning methods that have
been employed for facial expression recognition.

A. Expression Image Datasets

Developments of facial expression recognition largely rely
on sufficient facial expression databases. However, due to
the nature of facial expression, there is a restricted number
of publicly available databases providing a sufficient number
of face images labeled with accurate expression information.
Table I shows the summary of the existing image databases
with main reference, number of samples, age range, collected
environment, expression distribution, annotation method and
additional information.

Several limitations among these widely used databases are
common:

1. Many available databases were produced in tightly con-
trolled environments. Subjects in them were taught to
act expressions in a posed paradigm. Owing to the
lack of diversity of subjects and conditions, the current
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TABLE I

COMPARISON OF TEMPORAL FACIAL EXPRESSION DATABASES. VAR = VARIOUS, UNI = UNIFORM, P = POSED AND S = SPONTANEOUS

recognition systems tested on these facial expression
databases have reached near-perfect performance, which
hinders the progress of expression recognition in the
wild.

2. Images captured in real-life scenarios often present com-
plex, compound or even ambiguous emotions rather than
simple and prototypical emotions. However, the majority
of the current databases include only six basic cate-
gories (surprise, fear, disgust, happiness, sadness and
anger) or fewer.

3. The number of labelers in these databases is too small,
which reduces the reliability and validity of the emo-
tion labels. Additionally, emotion labels in most posed
expression databases have referred to what expressions
were requested rather than what was actually performed.

We then focus on discussing image databases with sponta-
neous expressions.

SFEW 2.0 [12] collected images from movies using
key-frame extraction method and was introduced in the
EmotiW 2015 Challenge. The database covers unconstrained
facial expressions, varied head poses, a large age range, occlu-
sions, varied focus and different resolutions of faces. However,
it contains only 1,635 images labeled by two independent
labelers.

FER-2013 [22] contains 35,887 images collected and auto-
matically labeled by Google image search API. Cropped
images are provided in 48×48 low resolution and converted to

grayscale. Unfortunately, FER-2013 does not provide informa-
tion about facial landmark location and the images are difficult
to register well at the provided resolution and quality.

BP4D-Spontaneous [80] contains abundant images with
high resolution from 41 subjects displaying a range of sponta-
neous expressions elicited through eight tasks. One highlight
of BP4D is that it captured images using a 3D dynamic face
capturing system. However, the database organization were
lab-controlled, and all the subjects in this dataset are young
adults.

AM-FED [51] contains 242 facial videos from the real
world. Spontaneous facial expressions were captured from
subjects under different recording conditions while they were
watching Super Bowl commercials. The database was anno-
tated for the presence of 14 FACS action units. However,
without specific emotion labels, it is more suited for researches
on AUs.

EmotioNet [4] is a large-scale database with one million
facial expression images collected from the Internet. Most
samples were annotated by an automatic AU detection algo-
rithm, and the remaining 10% were manually annotated with
AUs. EmotioNet contains 6 basic expressions and also 17 com-
pound expressions; however, the emotion categories are judged
based on AU label and not manually annotated.

AffectNet [53] contains more than one million images
obtained from the Internet by querying different search engines
using emotion related tags. A total of 450,000 images are
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annotated with basic expressions by 12 labelers. Furthermore,
this database contains continuous dimensional (valences and
arousal) models for these images. However, each image was
labeled by only one annotator due to time and budget con-
straints, and compound expressions are not included.

In contrast to these databases, RAF-DB simultaneously
satisfies multiple requirements: sufficient data, various envi-
ronments, group perception of facial expressions and data
labels with minimal noise.

B. The Framework for Expression Recognition

Automatic facial expression analysis procedures can gen-
erally be divided into three main components [20]: face
acquisition, facial feature extraction and facial expression
classification.

In the face acquisition stage, an automatic face detector is
used to locate faces in complex scenes. Feature points are
then used to crop and align faces into a unified template by
geometric transformations.

For facial feature extraction, previous methods can be
categorized into two main groups: appearance-based meth-
ods and AU-based methods. Appearance-based methods [49]
use common handcrafted feature extraction methods, such
as LBP [64] and Haar [72]. AU-based methods [68] recog-
nize expressions by detecting AUs. The most well-known
AUs included in our study are the following: AU1–Inner
Brow Raiser, AU2–Outer Brow Raiser, AU4–Brow Low-
erer, AU5–Upper Lid Raiser, AU6–Cheek Raiser, AU7–Lid
Tightener, AU9–Nose Wrinkler, AU10–Upper Lip Raiser,
AU12–Lip Corner Puller, AU15–Lip Corner Depressor,
AU17–Chin Raiser, AU20–Lip stretcher, AU23–Lip Tight-
ener, AU24–Lip Pressor, AU 25–Lips part, AU26–Jaw Drop,
AU 27–Mouth Stretch. Furthermore, mid-lever feature learning
methods [8], [24], [44] based on manifold learning have been
developed to enhance the discrimination ability of extracted
low-level features.

Feature classification is performed in the final stage. The
commonly used classification methods for emotion recognition
include support vector machine (SVM), nearest neighbor (NN)
based classifier, LDA, HMM, DBN and decision-level fusion
on these classifiers [34], [78]. The extracted facial expression
information is either classified as a particular facial action or a
particular basic emotion [56]. Most of the studies on automatic
expression recognition focus on the latter; yet, the majority
of the existing systems for emotional classification is based
upon Ekman’s cross-cultural theory of six basic emotions [17].
Indeed, without making additional assumptions about how to
determine what action units constitute an expression, there can
be no exact definition for the expression category. The basic
emotional expressions are therefore not universal enough to
generalize expressions displayed on the human face [61].

C. Deep Learning for Expression Recognition

Recently, deep learning algorithms have been applied to
visual object recognition, face verification and detection,
image classification and many other problems, and have

TABLE II

KEYWORDS USED TO COLLECT THE IMAGES FOR RAF-DB

achieved state-of-the-art results. So far, few deep neural net-
works have been used in facial expression recognition due to
the lack of sufficient training samples. In ICML 2013 compe-
tition [22], the winner [67] was based on Deep Convolutional
Neural Network (DCNN) plus SVM. In EmotiW 2013 compe-
tition [11], the winner [32] combined modality specific deep
neural network models. In EmotiW 2015 [12], more com-
petitors implemented deep learning methods: transfer learning
was used to solve the problem of small database in [54],
a hierarchical committee of multi-column DCNNs in [33]
gained the best result on SFEW 2.0 database, and LBP features
combined with a DCNN structure were proposed in [38].
In [41], AU-aware Deep Networks (AUDN) was proposed to
learn features with the interpretation of facial AUs. In [42],
3D Convolution-al Neural Networks (3DCNN-DAP) with
deformable action parts constraints were adopted to localize
the action parts and encode them effectively. In DTAGN [30],
two different models were combined to extract temporal
appearance and geometry features simultaneously. In [52],
a DCNN with inception layers was proposed to achieve
comparable results. In [79], a DNN-driven feature learning
method was proposed to address multi-view facial expression
recognition.

III. REAL-WORLD EXPRESSION DATABASE: RAF-DB

A. Creating RAF-DB

1) Data collection: At the very beginning, images’ URLs
collected from Flickr were fed into an automatic open source
downloader to download images in batches. Considering that
the results returned by Flickr’s image search API were in
well-structured XML format, from which the URLs can be
easily parsed, we then used a set of keywords to pick out
the images that were related to the six basic emotions plus
the neutral emotion. At last, a total of 29,672 real-world
facial images are presented in our database. Some of the
emotion-related keywords used are listed in Table II. Figure 2
shows the pipeline of data collection.

2) Database Annotation: Annotating nearly 30,000 images
is an extremely difficult and time-consuming task. Considering
the compounded property of real-world expressions, multiple
views of images’ expression states should be collected from
different labelers. Therefore, we employed 315 annotators
(students and staff from universities) who were instructed with
a one-hour tutorial of psychological knowledge on emotion
for an online facial expression annotation assignment, during
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Fig. 2. Overview of the construction and annotation of RAF-DB. Initially, images collected from Flickr were fed into an automatic downloader to download
the images in batches. Then, a large number of real-world facial images were picked out using emotion-related keywords. To guarantee the reliability of the
labeling results, we have invited sufficient well-trained labelers to independently annotate each image about 40 times.

Fig. 3. Database annotations. (a): The web-based framework used for the
annotation. (b): A Sadly Fearful sample from RAF-DB with its 7-dimensional
expression distribution.

which they were asked to classify images into the most appar-
ent one from seven classes. We developed a website to make
it easy for our annotators to contribute, which shows each
image with exclusive attribute options. Images were randomly
and equally assigned to each labeler, ensuring that there was
no direct correlation among the images labeled by one person.
And each image was ensured to be labeled by about 40 inde-
pendent labelers. After that, a multi-label annotation result
was obtained for each image, i.e., a seven-dimensional vector
where each dimension indicates the votes for the relevant
emotion. The UI of the database annotation application is
shown in Figure 3(a), and an example of a typical annotation
result is shown in Figure 3(b).

3) Metadata: The data are provided with precise locations
and the size of the face region, as well as five manually located
landmark points (the centers of two eyes, the tip of the nose
and the two corners of the mouth) on the face. The 5 facial
landmarks were accurately located by labelers who were asked
to guess the locations of occluded landmarks. Specifically,
the rough locations and points were first detected automatically
using the Viola-Jones face detector [70] and SDM [74] based
methods. Then, imprecise or missed detections and localiza-
tions were corrected by human labelers. Besides, an automatic
landmark annotation mode without manual label is included:
37 landmarks were picked out from the annotation results
provided by Face++ API [28]. Figure 4(a) shows sample
faces with five precise landmarks and 37 landmarks. We also
manually annotated the basic attributes (gender, age (5 ranges)
and race) of all RAF faces. In summary, subjects in our
database range in age from 0 to 70 years old. They are 52%
female, 43% male, and 5% unclear. For racial distribution,
there are 77% Caucasian, 8% African American, and 15%
Asian. The pose of each image, including pitch, yaw and roll

Fig. 4. (a) Sample face with five accurate landmarks manually cor-
rected by our experimenters and 37 landmarks automatically annotated using
Face++ API; (b) Age and pose distributions of the images in RAF-DB.

parameters, is computed from the manually labeled locations
of the five facial landmarks. Figure 4(b) shows the age (images
with unclear gender are of infants.) and pose distributions in
RAF-DB.

4) Reliability Estimation: Due to the subjectivity and varied
expertise of the labelers and the wide range of image difficulty,
there was some disagreement among annotators. To get rid
of noisy labels, motivated by [73], an Expectation Maxi-
mization (EM) framework was used to assess each labeler’s
reliability.

Let D = {(x j , y j , t1
j , t2

j , . . . , t R
j )}n

j=1denote a set of n
labeled inputs, where y j is the gold standard label (hidden
variable) for the j th sample x j , and ti

j ∈ {1, 2, 3, 4, 5, 6, 7}
is the corresponding label given by the i th annotator. The
correct probability of t i

j is formulated as a sigmoid function
p(t i

j = y j |αi , β j ) = (1 + exp(−αiβ j ))
−1, where 1/β j is the

difficulty of the j th image and αi is the reliability of the
i th annotator.

Our goal is to optimize the log-likelihood of the given
labels:

max
β>0
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�
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Fig. 5. Examples of six-class basic emotions and twelve-class compound emotions from RAF-DB. The detailed data proportion and class distribution of
RAF-DB are attached to each expression class.

Algorithm 1 Label Reliability Estimation Algorithm

where Q j (y) is a certain distribution of hidden variable y,

Q j (y j )= p(t j , y j |α, β)
�
y

p(t j , y j |α, β)
= p(t j , y j |α, β)

p(t j |α, β)
= p(y j |t j , α, β).

After revision, 285 annotators’ labels have been remained
and Cronbach’s Alpha score of all labels is 0.966. Algorithm 1
summarizes the learning process of label reliability estimation.
In contrast to the Gaussian prior initialization in [73], we fur-
ther introduced the prior knowledge of annotation for faster
convergence.

5) Subset Partitions: Let G j = {g1, g2, . . . , g7} denote
the 7-dimensional ground truth of the j th image, where

gk =
R�

i=1
αi 1t i

j=k (αi means the i th annotators’ reliability.

1A is an indicator function that evaluates to “1” if the

Boolean expression A is true and “0” otherwise.), and label
k ∈ {1, 2, 3, 4, 5, 6, 7} refers to surprise, fear, disgust, happi-
ness, sadness, anger and neutral, respectively. We then divide
RAF-DB into different subsets according to the 7-dimensional
ground truth. For the Single-label Subset, we first calculate

the mean distribution value gmean =
7�

k=1
gk/7 for each image,

then select label k w.r.t. gk > gmean as the valid label. Images
with a single valid label are classified into Single-label Subset.
For Two-tab Subset, the partition rule is similar. The only
difference is that we removed images with neutral labels before
the partition step. Figure 5 exhibits specific samples and the
concrete proportion of 6-class basic emotions and 12-class
compound emotions.

B. CK+ and RAF Cross-Database Study

We then conducted a CK+ [46] and RAF cross-database
study to explore the specific differences between expressions
of real-world affective faces and lab-controlled posed faces
guided by psychologists. Here, “cross-database” means we use
the images from one database for training and images from
the other for testing. By this study, we aim to identify the real
challenges of real-world affective face analysis. To eliminate
the bias caused by different training sizes, the single-tab subset
of RAF-DB has been sub-sampled to balance the size of these
two databases.

To ensure the generalizability of the classifiers, we applied
SVM for classification and implemented the HOG descrip-
tor [9] for representation. Specifically, facial images were first
aligned by an affine transformation defined by the centers of
the two eyes and the center of the two corners of the mouth
and then normalized to the size of 100×100. Then, the HOG
features were extracted for each aligned face image. Finally,
SVM with radial basis function (RBF) kernel implemented
by LibSVM [7] was applied for classification. The parameters
were optimized via grid search.

We then performed a cross-database experiment based
on the six-class expression. Multiclass SVM (mSVM) and
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Fig. 6. Confusion matrixes for cross-database experiments using HOG
features. The true labels (training data) are on the vertical axis, and the
predicted labels (test data) are on the horizontal axis. (a) RAF −→ CK+.
(b) CK+ −→ RAF.

confusion matrix were used as the classification method and
assessment criteria, respectively. Figure 6 shows the results
of this experiment, where Matrix (a) refers to training on
RAF-DB and testing on CK+ and Matrix (b) refers to training
on CK+ and testing on RAF-DB.

Analyzing the diagonals of these two matrixes, we can
see that surprise, happiness and disgust are the emotions
with the highest recognition rates in both cases. This result
is in line with many single-database tests based on CK+,
such as [46], [58], and [64]. The average of the diagonals
indicates that Matrix (a) was detected with 62% accuracy
while Matrix (b) was detected with only 39% accuracy, which
indicates that data collected from the real world are more var-
ied and effective than lab-controlled data. This is particularly
evident in the expression of sadness, happiness and surprise.
Furthermore, anger and disgust are often confused with each
other in both cases, which conforms to the survey in [5].

To explain the phenomena above, more detailed research
must be conducted to identify the specific differences in each
expression between these two databases. Therefore, a facial
action coding system (FACS) analysis was employed on the
experimental data from RAF-DB. FACS was first presented
in [17], where the changes in facial behaviors were described
by a set of action units (AUs). To ensure the reliability, two
FACS coders were employed to label AUs for the 309 images
randomly chosen from RAF-DB. During annotation, the mag-
nified original color facial images were displayed on the
screen. The inter-observer agreement quantified by coefficient
kappa was 0.83, and the two coders discussed with each
other to arbitrate the disagreements. We then quantitatively
analyzed the AU presence for different emotions in CK+
and RAF. Some examples from CK+ and RAF are shown
in Figure 7. Additionally, the AU occurrence probabilities
for each expression from the subset of RAF-DB are shown
in Table III.

IV. DEEP LOCALITY-PRESERVING FEATURE LEARNING

In addition to the difficulties such as variable lighting,
poses and occlusions, real-world affective faces pose at
least two challenges that require new algorithms to address.
First, as indicated by our cross-database study, real-world

TABLE III

AU OCCURRENCE PROBABILITIES FOR EACH EXPRESSION IN RAF-DB

expressions may associate with various AU combinations that
require classification algorithms to model the multi-modality
distribution of each emotion in the feature space. Second,
as suggested by our crowdsourcing results, a large proportion
of real-world affective faces express compound or even multi-
ple emotions. Therefore, traditional hand-engineered represen-
tations that perform well on laboratory-controlled databases
are not suitable for expression recognition tasks in the wild.

Recently, DCNN has been proved to outperform handcrafted
features on large-scale visual recognition tasks. Conventional
DCNN commonly uses the softmax loss layer to supervise the
training process. By denoting the i -th input feature xi with the
label yi , the softmax loss can be written as

Ls = − 1

n

n�

i=1

log

�
e fyi

�
j e f j

,

�
(1)

where f j denotes the j -th element ( j = 1 . . . C , C is the
number of classes) of the vector of the class scores f , and n
is the number of training data. The softmax layer merely helps
to keep the deeply learned features of different classes (expres-
sions) separable. Unfortunately, as shown in Figure 1, facial
expressions in the real world show significant intra-class
differences in occlusion, illumination, resolution and head
position. Moreover, individual differences can also lead to
major differences in the same expression category, for exam-
ple, laugh vs. smile.

To address these difficulties, we propose a novel DLP-CNN
to address the ambiguity and multi-modality of real-world
facial expressions. In DLP-CNN, we add a new supervised
layer to the fundamental architecture shown in Table IV,
namely, locality preserving loss (LP loss), to improve the
discrimination ability of the deep features. The basic idea is
to preserve the locality of each sample xi and to make the
local neighborhoods within each class as compact as possible.
To formulate our goal:

min
�

i, j

Si j
��xi − x j

��2
2 , (2)

where matrix S is a similarity matrix. The deep feature x ∈ R
d

denotes deep convolutional activation features (DeCaf) [13]
taken from the final hidden layer, i.e., just before the softmax
layer that produce the class predictions. A possible way to
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Fig. 7. Comparison of six basic emotions from CK+ and RAF. Facial expressions from top to bottom are Surprise, Happiness, Fear, Anger, Disgust and
Sadness. It is evident that the expression AUs in RAF are more diverse than those in CK+. (a) CK+. (b) RAF-DB.

TABLE IV

THE CONFIGURATION PARAMETERS IN THE FUNDAMENTAL ARCHITECTURE (BASEDCNN)

define S is as follows.

Si j =

⎧
⎪⎨

⎪⎩

1, x j is among the k-nearest neighbors of xi

or xi is among the k-nearest neighbors of x j

0, otherwise,
(3)

where xi and x j belong to the same class of expression and
k defines the size of the local neighborhood.

This formulation effectively characterizes the intra-class
local scatter. Note that xi should be updated as the iterative
optimization of the CNN. To compute the summation of the
pairwise distances, we need to consider the entire training set
in each iteration, which is inefficient to implement. To address
this difficulty, we do the approximation by searching the
k-nearest neighbors for each sample xi , and the LP loss
function of xi is defined as follows:

Llp = 1

2n

n�

i=1

������
xi − 1

k

�

x∈Nk {xi }
x

������

2

2

, (4)

where Nk {xi} denotes the ensemble of the k-nearest neighbors
of sample xi with the same class.

The gradient of Llp with respect to xi is computed as:

∂Llp

∂xi
= 1

n

⎛

⎝xi − 1

k

�

x∈Nk{xi }
x

⎞

⎠. (5)

In this manner, we can perform the update based on mini-
batch. Note that the recently proposed center loss [71] can be
considered to be a special case of the LP loss if k = nc − 1
(nc is the number of training samples in class c to which xi

belong). While center loss simply pulls the samples to a single
centroid, the proposed LP loss is more flexible, especially
when the class conditional distribution is multi-modal.

We then adopt the joint supervision of softmax loss, which
characterizes the global scatter, and the LP loss, which char-
acterizes the local scatters within class, to train the CNNs
for discriminative feature learning. The objective function is
formulated as follows: L = Ls + λLlp , where Ls denotes the
softmax loss and Llp denotes the LP loss. The hyperparameter
λ is used to balance the two loss functions. Algorithm 2
summarizes the learning process in the DLP-CNN. Intuitively,
the softmax loss forces the deep features of different classes to
remain apart and the LP loss efficiently pulls the neighboring
deep features of the same class together. With the joint supervi-
sion, both the inter-class feature differences and the intra-class
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Algorithm 2 Optimization Algorithm of DLP-CNN

feature correlations are enlarged. Hence, the discriminative
power of the deeply learned features can be highly enhanced.

V. EXPERIMENTAL RESULTS ON BASELINE AND DLP-CNN

We first conducted baseline experiments on RAF-DB. Then,
the proposed deep learning method, Deep Locality-preserving
CNN, was employed to solve the difficulties of facial expres-
sion recognition in real world.

A. Baseline Experiment

In this section, to evaluate the tasks with real-world
challenges, we performed two benchmark experiments on
RAF-DB and presented affiliated baseline algorithms and per-
formances. While our main purpose is to analyze the results of
the aforementioned techniques on RAF-DB, we also conduct
experiments on two small and popular datasets, CK+ and
JAFFE [48].

For facial representations, we employ two types of infor-
mation encoded in the feature space: shape and appearance.
Experiments on human subjects demonstrate that shape repre-
sentations play a role in the recognition of the emotion class
from face images [27], [62]. Before computing our feature
space, all images are aligned and downsized to 100*100 pixels
within the given precise five landmarks.

The 37 fiducial points are used to determine the dimen-
sions of our shape feature. More formally, given two fiducial
points, zi and z j , where i �= j , i and j = {1, . . . , 37},
zi = (zi1, zi2)

T , zi1 and zi2 are the horizontal and vertical
components of the fiducial point, respectively, and their rel-
ative positions are di jk = zik − z jk , k = 1, 2. With these
37 facial landmarks, the feature vector f has 2 · (37 · 36)/2 =
1, 332 dimensions defining the shape of the face. Before
passing the features into the classifier, we normalize the feature
vector f to be f̃ as follows:

f̃i = 1

2

�
fi − μi

2σi
+ 1

�
, (6)

where i = {1, . . . , 1332}, and μi and σi are the mean
and standard deviation of the i th feature across the training

data, respectively. Then, we truncate the out-of-range elements
to either 0 or 1.

We also employ three widely used low-level appearance
features: LBP [55], HOG [9] and Gabor [40] representa-
tions. For LBP, we select the 59-bin L B Pu2

8,2 operator and
divide the 100*100 pixel images into 100 regions with a
10*10 grid size, which was empirically found to achieve
relatively good performance for expression classification. For
HOG, we first divide the images into 10*10 pixel blocks of
four 5*5 pixel cells with no overlapping. By setting 10 bins
for each histogram, we obtain a 4,000-dimensional feature
vector per aligned image. For the Gabor wavelet, we use
a bank of 40 Gabor filters at five spatial scales and eight
orientations. The downsampled image size is set to 10*10,
yielding 4,000-dimensional features.

For the classification task we use linear SVMs with a
one-against-one strategy to decompose the multi-class clas-
sification problem into multiple binary-class classifications by
voting. Given a training set {(xi , yi ), i = 1, . . . , n}, where
xi ∈ R

d and yi ∈ {−1,+1}, any test sample x can be classified
using:

min
w

1

2
�w�2 + C

n�

i=1

max(1 − yiw
T xi , 0). (7)

To objectively measure the performance for the followers
entries, we split the dataset into a training set and a test
set, where the training set is five times larger than the test
set, and the expressions in both sets have a near-identical
distribution. Because real-world expressions have an imbal-
anced distribution, the accuracy metric, which is employed as
the evaluation criterion in most datasets, is not used in RAF
as it is especially sensitive to bias and is not effective for
imbalanced data [21]. Instead, we use the mean diagonal value
of the confusion matrix as the metric. During the parameter
optimization process, we also optimized the mean diagonal
value of the confusion matrix rather than the accuracy directly
provided by the SVMs.

1) Basic Emotions: In this experiment, seven basic emo-
tion classes were detected using all 15,339 images from the
single-label subset. The best classification accuracy (output
by SVM) was 66.82% for shape features, 72.71% for LBP,
74.35% for HOG, and 77.28% for Gabor. The accuracy results
decreased to 50.52%, 55.98%, 58.45% and 65.12% when
using the mean diagonal value of the confusion matrix as the
metric. To assess the reliability of the basic emotion labels,
we also assigned a uniform random label, which we call a
naive emotion detector, to each sample. The best result for
the naive classifier was 16.07% when using the Gabor feature,
which is much lower than the former value.

For comparison, we employed the same methods on CK+
with 5-fold cross-validation and JAFFE with a leave-one-
subject-out strategy. The results shown in Table V confirm
that real-world expressions are more difficult to recognize and
the current common methods that perform well on the existing
databases cannot solve the expression recognition problem in
challenging real-world conditions.
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TABLE V

BASIC EXPRESSION CLASS PERFORMANCE COMPARISON OF CK+, JAFFE
AND RAF ALONG WITH COMPOUND EXPRESSION PERFORMANCE OF

RAF BASED ON THE LBP, HOG AND GABOR DESCRIPTORS, AND

SVM AND LDA+KNN CLASSIFICATION. THE METRIC IS THE

MEAN DIAGONAL VALUE OF THE CONFUSION MATRIX

To evaluate the effectiveness of different classifiers, we have
also trained LDA with nearest neighbor (NN) classification.
We found that LDA+NN was inferior to mSVM when training
on RAF, an extremely large database. Nevertheless, LDA+NN
performed better when training on small-scale datasets (CK+
and JAFFE), even outperforming mSVM in some cases. The
concrete results are given in Table V.

2) Compound Emotions: As suggested by our crowd-
sourcing results, a large proportion of real-world affective
faces express compound emotions. The performance evalu-
ation on the single-emotional data set may not be sufficiently
comprehensive for some real-world applications. Therefore,
we conducted additional baseline experiments on compound
emotions.

For compound emotion classification, we removed the fear-
fully disgusted emotion due to an insufficient number of
samples, leaving 11 classes of compound emotions, 3,954 in
total. The best classification accuracy (output by SVM) was
45.96% for shape features, 45.51% for LBP, 51.89% for
HOG, and 53.54% for Gabor. The accuracy decreased to
28.84%, 28.84%, 33.65% and 35.76% when using the mean
diagonal value of the confusion matrix as the metric. Again,
to demonstrate the reliability of the compound emotion labels,
we computed the baseline for the naive emotion detector,
which decreased to 5.79% when using the Gabor features.

As expected, the overall performance decreased substan-
tially when more expressions were included in the classi-
fication. The significantly worse results compared to those
of the basic emotion classification indicate that compound
emotions are more difficult to detect and that new methods
should be invented to solve this problem. In addition to the
multi-modality, the lack of training samples for compound
expressions from the real world is another major technical
challenge.

B. Deep Learning Experiment

Nowadays, deep learning has been applied to large-scale
visual recognition tasks and has performed exceedingly well
with large amounts of training data. However, fully supervised

deep models are easy to be overfitting on facial expression
recognition tasks due to the insufficient training samples for
model training. Therefore, most deep learning frameworks
employed for facial expression recognition [38], [54], [59]
are based on pre-trained models. These pre-trained models,
such as the VGG network [66] and AlexNet [35], were
initially designed for face recognition, which are short of
discrimination ability of expression characteristic. Therefore,
in this paper, we directly trained our deep learning system
on the sufficiently large self-collected RAF-DB from scratch
without using other databases.

All our models were trained based on the open source deep
learning framework, Caffe [29]. The already aligned grayscale
images were first normalized by dividing all the pixel values
by 255. We then considered a network taking a fixed-size input
(90*90) cropped from the images for data augmentation.

To compare different methods fairly, we adopted uniform
training methods and used uniform fundamental network
architectures. The learning rate was initially set to 0.01 and
was decreased by a factor of 10 at 5k and 18k iterations,
and we stopped training at 20k iterations. Moreover, we chose
stochastic gradient descent (SGD) for optimization and used
mini-batch with 64 samples. The momentum coefficient was
set to 0.9.

The model was regularized using weight decay. We set the
weight decay coefficient of the convolutional layer and first
fully connected layer to 0.0005 and that of the second fully
connected layer to 0.0025. MSRA [25] was used to initialize
the weight parameter of the convolutional layer and fully
connected layer, while the bias parameter was set to 0 at
the beginning of training. All our models were trained on
an NVIDIA Tesla K40 GPU, and approximately 3 hours was
required to train a model.

When conducting the experiments, we followed the same
dataset partition standards, image processing methods and
classification methods as those of the baseline system. Related
research [13] proved that well-trained deep convolutional
network can work as a feature extraction tool with general-
izability for the classification task. Following up this idea,
we first trained each DCNN for the basic emotion recognition
task (that is, we used the basic emotion training set as
the training samples and the basic emotion test set as the
validation samples) and then directly used the already trained
DCNN models to extract deep features for both basic and
compound expressions. The 2,000-dimensional deep features
learned from the raw data were extracted from the penultimate
fully connected layer of the DCNNs and were then classified
by SVM.

To investigate the efficiency of different values of λ and k
used in the DLP-CNN model, we conducted two experiments
on the basic expression recognition task. The accuracies
predicted directly by DLP-CNN for the basic expression
recognition are shown in Figure 8. In the first experiment (left),
we fixed k to 20 and varied λ from 0 to 0.1 to train different
models. As the results show, the accuracies are sensitive to
the choice of λ and λ = 0 is the case of using the softmax
loss, which leads to relatively poor performance of the deeply
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TABLE VI

EXPRESSION RECOGNITION PERFORMANCE OF DIFFERENT DCNNS ON RAF. THE METRIC IS THE MEAN DIAGONAL VALUE OF THE CONFUSION MATRIX

Fig. 8. Basic expression recognition performance on RAF-DB for different
values of λ (left) and k (right). (a) DLP-CNN models with different λ and
fixed k = 20. (b) DLP-CNN models with different k and fixed λ = 0.003.

TABLE VII

CONFUSION MATRIX FOR THE SEVEN BASIC EMOTION

CATEGORIES WHEN USING DLP-CNN

learned features. In the second experiment (right), we fixed
λ = 0.003 and varied k from 10 to 60 to train different models,
and we achieved the best performance when k was set to 20.

Concrete classification results of the basic and compound
expression in RAF-DB when using DLP-CNN features are
shown in Table VII and Table VIII. Figure 9(b) shows
the resulting 2-dimensional deep features learned from our
DLP-CNN model, where we attach example face images with
various intensity in different expression classes. Although the
RAF images include various identities, poses, and lighting,
the face images are mapped into a two-dimensional space with
separable expression clusters and continuous change in expres-
sion intensity. This is because while trying to preserve the local

TABLE VIII

CONFUSION MATRIX FOR COMPOUND EMOTION CATEGORIES WHEN

USING DLP-CNN. A, HAPPILY SURPRISED; B, HAPPILY DISGUSTED;
C, SADLY FEARFUL; D, SADLY ANGRY; E, SADLY SURPRISED;

F, SADLY DISGUSTED; G, FEARFULLY ANGRY; H, FEARFULLY

SURPRISED; I, ANGRILY SURPRISED; J, ANGRILY

DISGUSTED; K, DISGUSTEDLY SURPRISED

structure of the deep features, DLP-CNN implicitly empha-
sizes the natural clusters in the data and preserves the smooth
change within clusters. With its neighborhood-preserving char-
acter, the deep features are able to capture the intrinsic
expression manifold structure to a large extent.

From the results in Table VI, we have the following
observations. First, DCNNs, which achieve reasonable results
for large-scale image recognition setting, such as the VGG
network and AlexNet, are not efficient for facial expression
recognition. Second, all the deep features outperform the
unlearned features used in the baseline system by a significant
margin, which indicates that the deep learning architecture
is more robust and applicable for both basic and compound
expression classification. Finally, our new LP loss model
achieved better performance than the based model and the
center loss model. Note that the center loss, which efficiently
converges unimodal class, can help to enhance the network
performance when recognizing basic emotions, but it failed
when applied to compound emotions. These results demon-
strate the advantages of the LP loss for multi-modal facial
expression recognition, including both basic and compound
emotions.
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Fig. 9. The distribution of deeply learned features in (a) DCNN without LP loss and (b) DLP-CNN. The locality-preserving loss layer helps the network to
learn features with greater discrimination. Moreover, non-neutral expressions that have obvious intensity variations, such as happiness, sadness, fear, surprise
and anger, change the intensity continuously and smoothly, from low to high, from center to periphery. Moreover, images with the disgust label, which is the
most confused expression, are assembled in the middle. With the neighborhood-preserving character of DLP-CNN, the deep features are able to capture the
intrinsic expression manifold structure to a large extent. Best viewed in color.

Fig. 10. Comparison of DLP-CNN and center loss in terms of convergence
performance and parameter sensitivity. (a) convergence. (b) Accuracy w.r.t λ.

C. Comprehensive Comparisons With Center Loss

As center loss is a special case of DLP-CNN, we further
compared DLP-CNN with center loss in terms of time
efficiency, convergence performance and parameter sensitivity.

For the time efficiency comparison, we evaluated the running
time speed using the same settings as those described
in Subsection V-B. Specifically, we ran each network for
10 trials over 500 iterations. The running time is 333.18±0.33
ms for center loss and 475.47 ± 2.15 ms for DLP-CNN.
According to the setting in [71], the center of each class is
directly learned by the network. Considering that the training
data size for facial expression recognition is not large,
in DLP-CNN, we calculate the k-nearest neighbors for each
sample by traversing the whole training set. In this context,
DLP-CNN takes more time for each iteration. We have
also assessed the convergence performance. Figure 10(a)
shows the testing errors of these two methods on basic
expression recognition task, which indicates that DLP-CNN
has similar convergence speed to that of center loss with
improved accuracy during the convergence process. We also
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TABLE IX

COMPARISON OF THE RESULTS OF DLP-CNN AND OTHER STATE-OF-THE-ART METHODS ON THE CK+, SFEW 2.0 AND
MMI DATABASES. TO VALIDATE THE GENERALIZABILITY OF OUR MODEL, THE WELL-TRAINED DLP-CNN WAS

EMPLOYED AS A FEATURE EXTRACTION TOOL WITHOUT FINE-TUNING. (A) CK+. (B) SFEW 2.0. (C) MMI

Fig. 11. Already aligned sample images in CK+, SFEW2.0 and MMI.

checked the sensitivity of parameter λ. Figure 10(b) shows
the accuracy of DLP-CNN and center loss, respectively,
by varying λ ∈ {0, 0.003, 0.03, 0.1} for the basic expression
recognition task. The performance of DLP-CNN reaches its
maximum when λ = 0.003 and then decreases as λ continues
to increase. This change curve exemplifies the promoting effect
of the joint supervision of the softmax loss and the DLP loss
when a proper trade-off is chosen. Furthermore, comparison
of the performances of DLP loss and center loss shows that
DLP-CNN behaves better than center loss as λ varies.

D. Generalizability Tests on DLP-CNN

To assess the generalizability of our well-trained DLP-CNN
model to other databases, we employed the model to
directly extract fixed-length features of CK+, MMI and
SFEW 2.0 without fine-tuning. Already aligned sample
images from these three datasets are shown in Figure 11.
For the lab-controlled CK+ database, we selected the
last frame of each sequence with the peak expression,
309 images in total. During the experiment, we followed
the subject-independent experimental principle and performed
fivefold cross-validation. For the lab-controlled MMI data-
base, we selected the three peak frames in each sequence
for prototypic expression recognition, 528 images in total.
Similar to the settings in CK+, we followed the subject-
independent experimental principle and performed fivefold
cross-validation. For the real-world SFEW 2.0 database,

we followed the rule in EmotiW 2015 [12]. “SFEW best [33]”,
“SFEW second [77]” and “SFEW third [54]” indicate the
best single model result of the winner, the runner-up and
the second runner-up in EmotiW 2015, respectively. Note that
Kim et al. [33], Ng et al. [54], and Yu and Zhang [77] all
trained their models with additional data from SFEW.

From the comparison results in Table IX, we can see
that our network can also achieve comparable or even better
performance than other state-of-the-art methods, not only
for RAF, but also other databases. This indicates that our
proposed network can be used as an efficient and effective
feature extraction tool for facial expression databases, without
a significant amount of time to execute in traditional DCNNs.

VI. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is the presentation of a
new real-world publicly available facial expression database
with labeled data from the Internet, based on which we
propose a novel optimized algorithm for crowdsourcing and
a new locality-preserving loss layer for deep learning. The
RAF-DB contains, 1) 29,672 real-world images labeled with
different expressions, age range, gender and posture features,
2) a 7-dimensional expression distribution vector for each
image, 3) two different subsets: single-label subset, including
seven classes of basic emotions; two-tab subset, including
twelve classes of compound emotions, 4) the locations of five
manually labeled landmark points, and 5) baseline classifier
outputs for basic emotions and compound emotions.

For the baseline results, the performances of the fre-
quently used algorithms on RAF-DB, including both shape
and appearance features and the SVM classifier, were com-
pared with that of the laboratory-condition databases. The
comparison suggests that these methods are unsuitable for
expression detection in uncontrolled environments. To solve
the problem of real-world expression detection, we tested
various deep learning techniques. The proposed method, deep
locality-preserving CNN (DLP-CNN), are able to learn more
discriminative features for the expression recognition task and
help to enhance the classification performance.
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We hope that the release of this database will encour-
age more researches to study the effects of the real-world
expression distribution or detection, and we believe that the
database will be a useful benchmark resource for researchers
to compare the validity of their facial expression analysis
algorithms in challenging conditions. In the future, we will
attempt to expand the quantity and diversity of our database,
especially labels such as fear and disgust, which have relatively
few images due to the imbalanced emotion distribution in
real-world conditions.
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