
A Flexible Semi-Supervised Feature Extraction
Method for Image Classification

Fadi Dornaika1,2 and Youssof El Traboulsi1

1 University of the Basque Country (UPV/EHU), San Sebastian, Spain
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

Abstract. This paper proposes a novel discriminant semi-supervised
feature extraction for generic classification and recognition tasks. The
paper has two main contributions. First, we propose a flexible linear semi-
supervised feature extraction method that seeks a non-linear subspace
that is close to a linear one. The proposed method is based on a criterion
that simultaneously exploits the discrimination information provided by
the labeled samples, maintains the graph-based smoothness associated
with all samples, regularizes the complexity of the linear transform, and
minimizes the discrepancy between the unknown linear regression and
the unknown non-linear projection. Second, we provide extensive exper-
iments on four benchmark databases in order to study the performance
of the proposed method. These experiments demonstrate much improve-
ment over the state-of-the-art algorithms that are either based on label
propagation or semi-supervised graph-based embedding.

1 Introduction

Feature extraction with dimensionality reduction is an important step and es-
sential process in embedding data analysis. By computing an adequate repre-
sentation of data that has a low dimension, more efficient learning and inference
[1–4] can be achieved. Although the supervised feature extraction methods had
been successfully applied to many pattern recognition applications, they require
a full labeling of data samples. It is well-known that it is much easier to collec-
t unlabeled data than labeled samples. The labeling process is often expensive,
time consuming, and requires intensive human involvement. As a result, partially
labeled datasets are more frequently encountered in real-world problems.

Recently, semi-supervised learning algorithms were developed to effectively
utilize limited number of labeled samples and a large amount of unlabeled sam-
ples for real-world applications [5, 6]. In the past years, many graph-based meth-
ods for semi-supervised learning have been developed. The main advantage of
graph-based methods is their ability to identify classes of arbitrary distributions.
The use of data-driven graphs has led to many progresses in the field of semi-
supervised learning (e.g., [7–13]). Toward classification, an excellent subspace
should be smooth as well as discriminative. Hence, a graph-theoretic learning
framework is usually deployed to simultaneously meet the smoothness require-
ment among nearby points and the discriminative requirement among differ-
ently labeled points (e.g., [14] ). In addition to the use of partial labelling in
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semi-supervised learning, many researchers use pairwise constraints which can
be seen as another form of side information [15].

Despite the success of many graph-based algorithms in dealing with partial-
ly labeled problems [16], there are still some problems that are not properly
addressed. Almost all semi-supervised feature extraction techniques can suffer
from one of the following limitations:

1. The non-linear semi-supervised approaches do not have, in general, an im-
plicit function that can map unseen data samples. In other words, the non-
linear methods provide embedding for only the training data. This is the
transductive setting, i.e., the test set coincides with the set of unlabeled
samples in the training dataset. Indeed, solving the out-of-sample extension
is still an open problem for those techniques adopting non-linear embedding.

2. Almost all proposed semi-supervised approaches target the estimation of
a linear transform that maps original data into a low dimensional space.
While this simplifies the learning processes and gets rid of the out-of-sample
problem, there is no guarantee that such approaches will be optimal for all
datasets. The main reason behind this is that the criterion used is already a
rigid constraint that contains only the linear mapping. Thus, any coordinate
in the low-dimensional space is supposed to be a linear combination of the
original features. Thus, the model has not the flexibility to adapt the linear
model to a given non-linear model.

In addition to the above limitations, it is not clear what would be the per-
formance of the semi-supervised approaches when minimal labeling is used. In
this paper, we propose an Inductive Flexible Semi Supervised Feature Extrac-
tion. The aim is to combine the merits of Flexible Manifold Embedding and the
non-linear graph-based embedding. The proposed method will be flexible since
it estimates a non-linear manifold that is the closest one to a linear embedding.
The non-linear manifold and the mapping are simultaneously estimated. The di-
mension of the final embedding obtained by our proposed method is not limited
to the number of classes. This allows the application of any kind of classifiers
once the data are embedded in new sub-spaces. Unlike nonlinear dimensionality
reduction approaches which suffer from the out-of-sample problem, our proposed
method has an obvious advantage that the learnt subspace has a direct out-of-
sample extension to novel samples, and are thus easily generalized to the entire
high-dimensional input space.

The paper is structured as follows. In section 2, we briefly review the main
methods for semi-supervised learning including the graph-based label propaga-
tion and the semi-supervised embedding methods. In section 3, we introduce the
IFSSFE method. Section 4 states the differences between the proposed method
and the existing ones. Section 5 contains the experimental results obtained with
four public datasets. This section compares the performance of the proposed
method with the that of the competing methods. Finally, in section 6 we present
our conclusions. In the sequel, capital bold letters denote matrices and small
bold letters denote vectors.
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2 Related work

In order to make the paper self-contained, this section will briefly describe some
state-of-the art semi-supervised methods.

2.1 Notation and preliminaries

We define the training data matrix asX = [x1,x2, ...,xl,xl+1, ...,xl+u] ∈ RD×(l+u),
where xi|li=1 and xi|l+u

i=l+1 are the labeled and unlabeled samples, respectively,
with l and u being the total numbers of labeled and unlabeled samples, D be-
ing the feature dimension, and N = l + u being the total number of training
samples. Let nc be the total number of labeled samples in the cth class and rep-
resent the labeled samples as XL = [x1,x2, ...,xl] ∈ RD×l with the label of xi

as yi ∈ 1, 2, ..., C, where C is the total number of classes. Let S ∈ R(l+u)×(l+u)

as the graph similarity matrix with S(i, j) representing the similarity between
xi and xj , i.e., S(i, j) = sim(xi,xj). In a supervised context, one can also
consider two similarity matrices Sw and Sb that encode the within class and
between class graphs, respectively. For each similarity matrix, a Laplacian ma-
trix can be computed. For the similarity matrix S, the Laplacian matrix is given
by: L = D − S where D is a diagonal matrix whose elements are the row (or
column since the similarity matrix is symmetric) sums of S matrix. Similar ex-

pression can be found for Lb and Lw. The normalized Laplacian L̂ is defined by
L̂ = I−D−1/2 SD−1/2 where I denotes the identity matrix.

We also define a binary label matrix Y ∈ BN×C associated with the samples
with Y (i, j) = 1 if xi has label yi = j; Y (i, j) = 0, otherwise. In addition toY, we
can define an unknown label matrix denoted by F ∈ RN×C . In a semi-supervised

setting, F =

(
FL
FU

)
where FL = YL.

2.2 Graph-based label propagation methods

In the last decade, the SSL graph-based label propagation methods attracted
much attention. All of them impose that samples with high similarity should
share similar labels. They differ by the regularization term as well as by the loss
function used for fitting label information associated with the labeled samples.
All of these methods take as input the weighted graph S associated with data and
the label matrixY. The state-of-the art label propagation algorithms (can also be
called classifiers [17]) can be: Gaussian Fields and Harmonic Functions (GFHF)
[18], Local and Global Consistency (LGC) [19], Laplacian Regularized Least
Square (LapRLS) [20], Robust Multi-class Graph Transduction (RMGT) [21],
and Flexible Manifold Embedding (FME) [22].

Gaussian Fields and Harmonic Functions The GFHF algorithm [18]
solves the following optimization problem:



4 Fadi Dornaika and Youssof El Traboulsi

min
F

∑
i,j

||Fi. − Fj.||2Sij = min
F

trace(FT LF) s.t. FL = YL

Given the graph affinity matrix S as well as the known labels YL ∈ Rl×C ,
the goal is to derive the labels of unlabeled samples, FU ∈ Ru×C . It can be
shown that the matrix of unknown labels is given by:

FU = −L−1
UU LUL YL (1)

where LUU and LUL are submatrices of the Laplacian matrix L:

L =

(
LLL LLU
LUL LUU

)
Local and Global Consistency The Local and Global Consistency algorithm
[19] solves the following optimization problem:

min
F

[trace(FT L̂ F) + µ trace((F−Y)T (F−Y))]

which gives the closed-form solution:

F = (I+ L̂/µ)−1 Y

Robust Multi-class Graph Transduction (RMGT) The RMGT algorith-
m solves the convex optimization problem minF trace(FT LF) s.t. FL = YL,

F1C = 1N , FT 1N = NΩ, where the vector Ω ∈ RC is the class prior probabil-
ities. The solution of this optimization problem is given by:

FU = −L−1
UU LUL YL +

L−1
UU 1u

1T
u L−1

UU 1u

(N ΩT − 1T
l YL + 1T

uL
−1
UU LUL YL)

Laplacian RLS The linear LapRLS defines a linear regression function that
maps a feature vector x to its label representation Yi., i.e., Yi. = WT xi + b.
The term Laplacian is due to the fact that the regularization term contains the
classic Laplacian smoothing criterion. The linear LapRLS estimates the linear
transform by optimizes the following criterion:

g(W,b) =
l∑

i=1

∥WT xi + b−Yi.∥2 + λA ∥W∥2 + λI trace(W
TXLXTW) (2)

where the two coefficients λA and λI balance the norm of W, the manifold
smoothness and the regression error. The closed-form solution is given by:

W = (λI XLXT +XL XT
L + λA I)−1XL YL

b = YT
L 1l −WT XL 1l
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Flexible Manifold Embedding (FME) Flexible Manifold Embedding can
be seen as a flexible variant of non-linear embedding where the embedding is
given by the label distribution. FME simultaneously estimates the non-linear
embedding of unlabel samples and the linear regression over these non-linear
representations. In other words, FME can be seen as a framework that merges
LGC and LapRLS in order to solve the out-of-sample extension problem. Com-
pared with LapRLS, FME does not force the prediction labels to lie in the space
spanned by all the samples. Therefore, it can be more flexible and it can better
cope with the samples which reside on the nonlinear manifold. This framework
simultaneously estimates the label matrix as well as a linear mapping by mini-
mizing the following criterion:

g(F,W,b) = trace((F−Y)T U(F−Y)) + trace(FT LF)

+µ (∥W∥2 + γ ∥XT W+ 1N bT − F∥2)

where µ and γ are two balance parameters, and U is a diagonal matrix whose
first l diagonal elements are set to one and the rest N − l are set to zero. As can
be seen, the above criterion has four terms: the first is a fitting term over the
labeled sample, the second is the smoothing term over all samples, the third is
a regularization term, and the fourth term is the regression term. The sought
solution (F,W,b) is found by minimizing the above criterion. By vanishing the
derivative of g with respect to W and b, a relation between F and W can be
obtained. Then, by vanishing the derivative with respect to F a closed form
solution can be obtained. This is given by:

F = (U+ L+ µγHc − µγ2 Q)−1UY

with Q = XT
c Xc (γX

T
c Xc + I)−1 where Xc is the centered data matrix and

Hc = I− 1
N 1N 1T

N is the centering matrix.

2.3 Graph-based embedding methods

Unlike label propagation techniques that seek label inference, the embedding
techniques seek a general coordinate representation where the dimension of the
mapped data is not necessarily limited to the number of classes. Two main tech-
niques represent the state-of-the art in semi-supervised graph-based embedding:

Semi-Supervised Discriminant Analysis (SDA) Cai et al. extended L-
DA to SDA [23] by adding a geometrically-based regularization term in the
objective function of LDA. The core assumption in SDA is still the manifold
smoothness assumption, namely, nearby points will have similar representations
in the lower-dimensional space. We define as the data matrix of labeled data
XL = [x1,x2, ...,xl]. LDA can be seen as a particular case of a graph-based
embedding.
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Semi-Supervised Discriminant Embedding (SDE) SDE can be seen as the
semi-supervised variant of the Local Embedding (LDE) method [24]. In order
to discover both geometrical and discriminant structure of the data manifold,
SDE [25, 26] relies on three graphs: the within-class graph Gw (intrinsic graph),
the between-class graph Gb (penalty), and the graph defined over the whole set
(labeled and unlabeled samples).

3 Inductive Flexible Semi Supervised Feature Extraction
(IFSSFE)

In this section, we propose an Inductive Flexible Semi Supervised Feature Ex-
traction (IFSSFE) that can combine the merits of Flexible Manifold Embedding
idea and the non-linear graph based embedding. It should be noticed that the
dimension of the final embedding is not limited to the number of class. We
assume that the non-linear embedding of the seen data samples is given by
the matrix Z ∈ RN×d, i.e., the row vector Zi. is the non-linear representation
of the vector xi. We consider again the within class and between class graph-
s associated with the labeled data as well as the graph associated the labeled
and unlabeled data. The expression of the criteria associated with the non-linear
Semi-Supervised Discriminant Embedding will be given by minZ trace(ZT L̃w Z)

maxZ trace(ZT L̃b Z) minZ trace(ZT LZ):
By combining the above criteria together with the regression and regular-

ization terms we can define a criterion that should be minimized. This is given
by:

e(Z,W,b) = trace(ZT LZ) + trace(ZT L̃w Z)− λ trace(ZT L̃b Z) + (3)

µ (∥W∥2 + γ ∥XT W+ 1N bT − Z∥2)
= trace(ZT L1 Z) + µ (∥W∥2 + γ ∥XT W+ 1N bT − Z∥2) (4)

where L1 = L+ L̃w − λ L̃b, µ, γ, and λ are three positive balance parameters.
The non-linear embedding as well as the regression should be estimated such

that e is minimized. To obtain the optimal solution, we vanish the derivatives of
the objective function e with respect to W and b. We have:

b =
1

N
(ZT 1N −WTX1N ) (5)

W = γ (γXc X
T
c + I)−1Xc Z = AZ (6)

where A = γ (γXc X
T
c + I)−1Xc. We use the above expression for W and b in

the regression function XT W+ 1N bT , we get:

XT W+ 1N bT = XTAZ+
1

N
1N1T

NZ− 1

N
1N1T

NXTAZ

= (I− 1

N
1N 1T

N )XTAZ+
1

N
1N1T

NZ

= Hc X
TAZ+

1

N
1N1T

NZ = BZ
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with B = HcX
T A+ 1

N 1N1T
N . Thus, the criterion e becomes:

e(Z,W,b) = trace(ZT L1 Z) + µ (trace(ZT ATAZ) + γ trace((BZ− Z)T (BZ− Z))(7)

= trace(ZT (L1 + µATA+ µγ(B− I)T (B− I))Z) (8)

= trace(ZT (L1 +E)Z) (9)

where E = µATA+ µγ(B− I)T (B− I)).
Thus, the non-linear embedding Z is estimated by minimizing the above

criterion under a constraint in order to avoid the trivial solution Z = 0.

Z⋆ = argmin
Z

trace(ZT (L1 +E)Z) s.t. ZT Z = I

Thus Z⋆ is given by the eigenvectors of L1 +E associated with the smallest
eigenvalues. Once Z⋆ is estimated the corresponding regression W⋆ and b⋆ are
estimated by Eqs. (6) and (5).

Given an unseen sample xtest its embedding (a column vector) is given by
ztest = W⋆Txtest + b⋆.

4 Difference between the proposed method and existing
methods

Obviously, our proposed flexible method has several advantages compared with
existing methods. Indeed it can combine the merits of graph-based semi-supervised
label propagation and those of graph-based semi-supervised embedding method-
s. The advantages are as follows. First, unlike the FME method which estimates
label distributions, our method estimates a non-linear embedding whose dimen-
sion is not limited to the number of classes as it is the case with many frame-
works adopting the label propagation algorithm. Second, the proposed method
is a kind of a non-linear feature extractor that lends itself nicely to all machine
learning tools that can be used in the output space with any dimension in order
to infer the class (classification) or the continuous label (regression). Third, the
method is still inductive in the sense that it can work with unseen data. Fourth,
it inherits the flexibility of FME in the sense that a non-linear embedding and
a regression are found such that the non-linear embedding is close to the linear
one obtained by regression (see Figure 1). Thus, the proposed method can better
cope with the data sampled from a certain type of nonlinear manifold that is
somewhat close to a linear subspace.

5 Performance evaluation

We test our proposed method on four datasets. In our experiments, we use three
face datasets Extended Yale, FacePix and FERET, and one object database
(COIL-20).
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Fig. 1. An illustration of the difference between a rigid linear embedding and the
proposed flexible scheme IFSSFE.

5.1 Datasets

– Extended Yale1: We use the cropped version contains 1774 face images
of 28 individuals. The images of the cropped version contain illumination
variations and facial expression variations. The image size is 192×168 pixels
with 256-bit grey scale. The images are rescaled to 32×32 pixels in our
experiments.

– FERET2: We use a subset of FERET database, which includes 1400 images
of 200 distinct subjects, each subject has seven images. The subset involves
variations in facial expression, illumination and pose. In our experiment, the
facial portion of each original image is cropped automatically based on the
location of eyes and resized to 32×32 pixels.

– FacePix3: This database includes a set of face images with pose angle varia-
tions. It is composed of 181 face images (representing yaw angles from −90◦

to +90◦ at 1 degree increments) of 30 different subjects, with a total of 5430
images. We used a subset of this dataset in which each person has 18 images.

– COIL-204 This dataset (Columbia Object Image Library) consists of 1440
images of 20 objets. Each object has underwent 72 rotations (each object
has 72 images). The objects display a wide variety of complex geometry and
reflectance characteristics. We used a subset of the database with 18 images
for each object (one image for every 20 degree of rotation).

5.2 Semi-supervised learning and empirical setting

We compare our proposed method with GFHF, Class Mass Normalized GFHF
(GFHF+CMN), RMGT, LapRLS, SDA, SDE, FME, and LDA. It should be not-
ed that all these methods are semi-supervised except LDA which is supervised.

1 http : //vision.ucsd.edu/ ∼ leekc/ExtY aleDatabase/ExtY aleB.html
2 http : //www.itl.nist.gov/iad/humanid/feret/
3 http : //www.facepix.org/
4 http : //www.cs.columbia.edu/CAV E/software/softlib/coil − 20.php:
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For the embedding methods (LDA, SDA, SDE, and the proposed method), any
classifier can be used with the obtained mapped data in order to classify the un-
labeled and unseen data samples. Since all compared semi-supervised methods
used the graph Laplacian L associated with the training data, the graph was
constructed using the classic KNN graph (symmetric KNN) and the RBF (or
Gaussian) kernel for the edge weights. The weight associated with each neigh-
boring pair is given by S(xi,xj) = exp(−||xi − xj∥2/t0) where t0 ∈ R+ is the
kernel bandwidth parameter. It is set as in many works to the average of squared
distances in the training set. The values of neighborhood size was set to 10. For
the proposed method, we need to compute the within-class and in between class
graph (built on the labeled subset). The weights associated are set to ones or
zeros, i.e. the corresponding similarity matrices Sb and Sw are binary matrices.
It is worthy noting that all compared methods used the same data graph. This
makes sure that the difference in performance is due to the embedding method
only and not to the data graph.

We randomly select 50% data as the training dataset and use the remaining
50% data as the test dataset. Among the training data, we randomly label P
samples per class and treat the other training samples as unlabeled data. The
above setting is a natural setting to compare different methods. All the training
data (labeled and unlabeled samples) are used to learn a subspace (i.e., a projec-
tion matrix) for semi-supervised embedding methods or a classifier for the label
propagation methods, except that we only use the labeled data for subspace
learning in LDA. In all the experiments, PCA is used as a preprocessing step to
preserve 98% energy of the data.

5.3 Method comparison

For LapRLS, SDA, SDE, FME, two regularization parameters should be tuned.
For our proposed method three parameters are used. Each of these parameters
is set to a subset of values belonging to {10−9, 10−6, 10−3, 1, 103, 106, 109} as in
[22], and then we report the top-1 recognition accuracy (best average recognition
rate) from the best parameter configuration. Table 1 reports the best mean recog-
nition accuracy (for the four datasets) over ten random splits on the unlabeled
data and the test data, which are referred to as Unlabel and Test, respectively.
For the embedding methods (LDA, SDA, SDE, IFSSFE), the classification was
performed using the Nearest Neighbor classifier.

For the proposed method (IFSSFE), the dimension of the embedding is
bounded by the number of training samples N . Thus, for each parameter config-
uration associated with the criterion and for each split we have a curve for the
recognition rate that depicts the rate at several sampled dimensions. Thus, for
each parameter configuration, the performance is set to best rate in the mean
curve which was obtained by averaging the rate curves over the splits.

Figure 2 illustrates the average recognition rate curves as a function of feature
dimensions. These curves were obtained for the test part of data using one labeled
sample per class. We recall that FME method does not depend on the dimension,
the maximum dimension of SDA method is given by C − 1, and the maximum
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dimension of SDE is given by the dimension of input samples. For the proposed
method, the maximum dimension is given by the number of training samples.

From the results depicted in Table 1 and Figure 2, we can draw the following
conclusions:

– In general, the proposed method IFSSFE has given the best recognition rate.
– For the non-face dataset (COIL-20), the improvement obtained by the pro-

posed method was very significant compared with the performance of FME
and the embedding methods SDA, and SDE. This holds true for all label
percentages and for unlabeled and test data.

– For some datasets, the performance obtained with the test part of the data
was better than the performance obtained with the unlabeled part. This can
be explained by the fact that the captured model has a high generalization
capacity.

– The performance of GFHF, GFHF+CMN, and RMGT (direct label propa-
gation methods) was not that good for face datasets.

– More importantly, we can observe that the optimal performance of IFSSFE
can be reached with a relatively low dimension. This property makes the
proposed method very appealing in practice. Indeed, one needs to find a
trade-off between a high recognition rate and a compact representation with
a reduced number of dimensions.

5.4 Method performance with fixed dimension

In this section, we compare the performance of the FME method with that of
our proposed method for which the dimension of features is fixed to the num-
ber of classes, C. Note that the FME method is essentially a label propagation
algorithm that uses C features. We will show that even in the case where dimen-
sionality of the embedding is fixed to C, IFSSFE is still superior to FME if the
balance parameters were optimized at this fixed dimension. This is explained by
the fact that the criterion used by the proposed method was the main reason for
this obtained superiority. Table 2 illustrates the average performance of FME
and IFSSFE in such conditions. Since the proposed IFSSFE is a generic semi-
supervised embedding, we used four classifiers: 1-NN, Support Vector Machines
(SVM with RBF Kernel), SVM (with polynomial degree equal to 1 and 3), and
the Two Phase Test Sample Sparse Representation (TPTSSR) classifier [27]. As
can be seen, even when IFSSFE is restricted to work with only C features, its
performance is still better than that of FME. We can also observe that the use
of other classifiers such as SVM and TPTSSR has enhanced the performance of
the IFSSFE with respect to the Nearest Neighbor classifier.

Figure 3 illustrates the average performance of FME and the proposed IF-
SSFE as a function of feature dimension for three datasets: Extended Yale,
FacePix, and COIL-20. The projection models associated with FME and IF-
SSFE were optimized on the fixed dimension given by C. In each plot, we show
the average curve over ten splits. These curves depicts the performance on the
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Table 1. The best average classification results on ten random splits. GFHF, GFH-
F+CMN, RMGT, LapRLS, and FME are based on label propagation. LDA, SDA,
SDE, and the two proposed method are embedding methods for which nearest neigh-
bor classifier was used after the projection.

Ext Yale 1 labeled sample 2 labeled samples 3 labeled samples

Method Unlabel(%) Test(%) Unlabel(%) Test(%) Unlabel(%) Test(%)

LDA 36.6 34.8 56.9 55.2 64.4 60.1
GFHF 19.0 - 37.3 - 42.9 -
GFHF+CMN 26.3 - 41.0 - 45.9 -
RMGT 23.0 - 40.5 - 45.6 -
LapRLS 44.9 41.7 59.6 56.7 61.3 59.1
SDA 36.6 34.8 57.2 55.0 65.0 61.5
SDE 40.0 37.7 54.5 52.4 50.0 49.0
FME 38.4 35.6 59.9 56.6 64.8 59.1
IFSSFE 46.3 41.2 65.9 62.6 75.3 69.3

FacePix 1 labeled sample 2 labeled samples 3 labeled samples

Method Unlabel(%) Test(%) Unlabel(%) Test(%) Unlabel(%) Test(%)

LDA 26.0 26.9 39.1 39.6 48.2 46.6
GFHF 17.3 - 27.9 - 36.6 -
GFHF+CMN 21.6 - 30.3 - 38.0 -
RMGT 18.1 - 29.4 - 38.8 -
LapRLS 31.3 30.0 43.4 40.9 48.4 45.6
SDA 26.0 26.9 42.4 43.0 53.6 50.9
SDE 40.4 36.0 54.4 49.5 57.1 52.2
FME 28.1 28.0 42.7 40.3 50.5 47.7
IFSSFE 40.6 37.8 56.6 53.6 65.8 61.2

FERET 1 labeled sample 2 labeled samples 3 labeled samples

Method Unlabel(%) Test(%) Unlabel(%) Test(%) Unlabel(%) Test(%)

LDA 21.7 21.0 35.7 36.4 43.9 55.0
GFHF 17.8 - 25.3 - 29.6 -
GFHF+CMN 23.6 - 30.9 - 38.4 -
RMGT 19.2 - 26.4 - 31.1 -
LapRLS 39.0 35.6 50.8 47.9 59.6 60.2
SDA 21.7 21.0 37.7 38.5 46.8 56.2
SDE 24.6 41.2 38.8 54.6 42.3 62.1
FME 35.5 27.9 47.2 39.5 54.1 53.0
IFSSFE 39.7 37.4 51.3 50.1 60.6 70.8

COIL-20 1 labeled sample 2 labeled samples 3 labeled samples

Method Unlabel(%) Test(%) Unlabel(%) Test(%) Unlabel(%) Test(%)

LDA 43.2 43.5 52.8 59.3 58.5 66.9
GFHF 52.8 - 58.3 - 63.2 -
GFHF+CMN 58.9 - 63.3 - 68.0 -
RMGT 57.1 - 60.4 - 65.1 -
LapRLS 58.9 54.1 64.8 65.7 69.3 71.7
SDA 43.2 43.5 53.3 59.0 60.4 66.9
SDE 56.0 55.5 66.8 65.6 75.4 72.4
FME 62.0 57.9 66.8 64.7 70.7 68.6
IFSSFE 68.0 60.8 75.1 71.7 80.4 77.4
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test subset in which the number of labeled samples per class was set to three. For
the proposed method IFSSFE, we used four classifiers: 1-NN, RBF SVM, poly-
nomial SVM (degree=3), and the Two Phase Test Sample Sparse Representation
(TPTSSR) classifier

6 Conclusion

This paper presented a novel semi-supervised dimensionality reduction method
for classification tasks. We propose an Inductive Flexible Semi Supervised Fea-
ture Extraction that retained the merits of Flexible Manifold Embedding and
the graph based non-linear embedding. The proposed method simultaneously
estimates a non-linear embedding as well as a transform needed for mapping
the unseen samples. The proposed method was evaluated on four benchmark
databases. We have provided a comparison with several competing methods
based on label propagation methods as well as on semi supervised graph-based
embedding. Our proposed method outperformed the competing methods in most
cases.
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Fig. 2. Recognition accuracy variation as a function of dimensions for Extended Yale,
FacePix, and COIL-20 datasets. These curves correspond to the best average curves.
One labeled sample per class is used.
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Table 2. Comparing the average performance of the FME method and the proposed
IFSSFE method obtained at dimension equal to C. For the proposed IFSSFE (a generic
semi-supervised embedding), we used four classifiers: 1-NN, RBF SVM, polynomial
SVM (degree=3), and the Two Phase Test Sample Sparse Representation (TPTSSR)
classifier.

Ext Yale 1 labeled sample 2 labeled samples 3 labeled samples

Method Unlabel(%) Test(%) Unlabel(%) Test(%) Unlabel(%) Test(%)

FME 38.4 35.6 59.9 56.6 64.8 59.1

IFSSFE (1-NN) 38.5 36.1 56.2 53.5 65.4 60.8
IFSSFE (RBF SVM) 38.5 36.1 53.0 50.6 59.5 54.9
IFSSFE (Poly. SVM) 44.9 41.0 62.2 57.2 67.3 60.8
IFSSFE (TPTSSR) 49.3 44.7 67.2 62.5 71.6 65.9

FacePix 1 labeled sample 2 labeled samples 3 labeled samples

Method Unlabel(%) Test(%) Unlabel(%) Test(%) Unlabel(%) Test(%)

FME 28.1 28.0 42.7 40.3 50.5 40.3

IFSSFE (1-NN) 31.6 32.1 47.9 45.9 56.8 53.1
IFSSFE (RBF SVM) 31.6 32.1 48.2 45.8 57.1 53.1
IFSSFE (Poly. SVM) 32.1 29.9 48.4 44.1 56.7 50.6
IFSSFE (TPTSSR) 31.9 30.8 50.9 47.3 61.3 55.7

COIL-20 1 labeled sample 2 labeled samples 3 labeled samples

Method Unlabel(%) Test(%) Unlabel(%) Test(%) Unlabel(%) Test(%)

FME 62.03 57.9 66.8 64.7 70.7 68.6

IFSSFE (1-NN) 63.6 59.5 72.9 68.7 78.2 75.5
IFSSFE (RBF SVM) 60.2 55.7 68.7 67.7 76.9 76.3
IFSSFE (Poly. SVM) 63.7 60.8 72.6 71.9 79.2 77.9
IFSSFE (TPTSSR) 62.0 57.9 66.8 64.7 70.7 68.6
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Fig. 3. A performance comparison between FME and the proposed IFSSFE as a func-
tion of features for three datasets: Extended Yale, FacePix, and COIL-20. The projec-
tion models associated with FME and IFSSFE were optimized on the fixed dimension
given by C, namely the number of classes. In each plot, we show the average curve over
ten splits. These curves depicts the performance on the test subset in which the number
of labeled samples was set to three per class. For the proposed method IFSSFE, we
used four classifiers:1-NN, RBF SVM, polynomial SVM (degree 3), and the Two Phase
Test Sample Sparse Representation (TPTSSR) classifier.
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