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Abstract. It is vital to select an appropriate distance metric for many
learning algorithm. Cosine distance is an efficient metric for measuring
the similarity of descriptors in classification task. However, the cosine
similarity metric learning (CSML)[1] is not widely used due to the com-
plexity of its formulation and time consuming. In this paper, a Quasi Co-
sine Similarity Metric Learning (QCSML) is proposed to make it easy.
The normalization and Lagrange multipliers are employed to convert
cosine distance into simple formulation, which is convex and its deriva-
tion is easy to calculate. The complexity of the QCSML algorithm is
O(t×p×d)1, while the complexity of CSML is O(r× b×g×s×d×m)2.
The experimental results of our method on UCI datasets for classification
task and LFW dataset for face verification problem are better than the
state-of-the-art methods. For classification task, the proposed approach
is employed on Iris, Ionosphere and Wine dataset and the classification
accuracy and the time consuming are much better than the compared
methods. Moreover, our approach obtains 92.33% accuracy for face ver-
ification on unrestricted setting of LFW dataset, which outperforms the
state-of-the-art algorithms.

1 Introduction

An appropriate distance measure (or metric) is fundamental to many supervised
and unsupervised learning algorithm such as k-means, kernel method, the near-
est neighborhood classification and so on. Besides, it is important for varieties
of application such as image retrieval or face recognition to choose a proper dis-
tance metric to measure the similarity or dissimilarity between different images.
Therefore, to apply an appropriate distance metric for practical applications, lots
of distance metric learning algorithm methods are proposed to find the special
latent relevance between different samples.

However, choosing a proper distance metric is highly problem-specific and
ultimately dictates the success of the actual learning algorithm. Many existing

1 The parameters t, p, d represent the number of iterations, the dimensionality of
descriptors and the compressed features.

2 From the paper[1], r is the number of iterations used to optimize the projection
matrix, b is the number of values tested in cross validation process, g is the number
of steps in the Conjugate Gradient method, s is the number of training data, d and
m are the dimensions of projection matrix.
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algorithms for metric learning have been shown to perform well in different
application, but most of them do not perform well in high dimensional input.
The high dimensional descriptor exists in a wide range of application such as
image retrieval[2], face recognition[1, 3] and natural language processing. In these
occasions, it is necessary to compress the high dimensional descriptors into low
dimensional ones due to high computation and storage. So the distance metric
learning is not only used to make data separately but also to compress the high
dimensional vectors.

Recently, Mahalanobis distance metric has been widely applied in many as-
pects as a metric learning measure[4–6]. Xing et al. [4] applied semidefinite pro-
gramming (SDP) objective function to learn a Mahalanobis distance metric for
clustering. They minimize the sum of Euclidean distance between similarity la-
beled inputs and maintained a lower bound on the distance between different
ones. Davis et al. [5] use information-theoretic regularization term for Euclidean
distance. Moreover, Qi et al. [6] formulate a sparse Mahalanobis matrix which
reflects the intrinsic nature of sparsity. They impose a sparse prior and show the
obtained l1-penalized Log-Determinant optimization problem for sparse metric
can be minimized by a block coordinate descent algorithm [7], which is faster
than SDP method widely used in metric learning.

Moreover, cosine similarity is an efficient distance metric to comparing the
difference between vectors and it is an effective alternative to Euclidean distance
in metric learning problem. Nguyen proposed a cosine similarity metric learning
(CSML)[1] which can improve the generalization ability of an existing metric
significantly in most cases. But it is not useful for high dimensional descriptors
because of the highly memory used and computing burden for gradient descent
method. In paper [3], Cao proposed a similarity metric learning (SML) which
combines Euclidean distance and cosine similarity as the metric learning objec-
tive function. The formulation of similarity metric learning is convex and Cao
optimized the dual formulation to obtain the global solution instead.

In this paper, due to the high computation and memory used, we proposed a
Quasi Cosine Similarity Metric Learning (QCSML) for high dimensional vectors.
There are two main contributions of our method. One is that we have introduced
a novel solution for cosine similarity metric learning problem. The other is that
QCSML is efficient for high dimensional vectors which are usually as the de-
scriptors for face recognition, image classification and image retrieval. QCSML
is not only discriminative for classification tasks but also used for dimensionality
reduction.

The paper is organized as following. In section 2, we review distance metric
and similarity metric for classification. In section 3, we formulate the detail of
Quasi Cosine Similarity Metric Learning. The learning algorithm and gradien-
t descent optimization method is introduced. Section 4 evaluates the proposed
Quasi Cosine Similarity Metric Learning algorithm on UCI datasets for classifi-
cation and LFW datasets for face recognition. Finally, the conclusion is given in
section 5.
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2 Preliminary

In this section, we briefly review general distance metric learning[4], cosine sim-
ilarity metric learning[1] and similarity metric learning[3].

2.1 Metric Learning

Given a set of points X = {x1, . . . , xn}, xi ∈ Rd, we can define a positive definite
matrix A ∈ Rd×d which represents the Mahalanobis distance.

d2A(xi, xj) = (xi − xj)TA(xi − xj) (1)

The goal of metric learning is to adapt the metric function to the problem using
information from the training datasets. Because of positive definite characteris-
tics, the matrix A can be decomposed as A = WTW , W ∈ Rp×d, therefore, the
metric function can be shown as

d2W (xi, xj) = (xi − xj)TWTW (xi − xj) = ‖Wxi −Wxj‖22 (2)

Here, we assume we have known the prior knowledge about the relationship
constraining the similarity or dissimilarity between pairs of points.

S : (xi, xj) ∈ S if xi and xj are similar
D : (xi, xj) ∈ D if xi and xj are dissimilar

(3)

This gives the optimization problem

min
∑

(xi,xj)∈S ‖Wxi −Wxj‖22
s.t.

∑
(xi,xj)∈D ‖Wxi −Wxj‖22 ≥ 1

(4)

Then in paper [4], Xing introduced the efficient algorithm using the Newton-
Raphson method to optimize the objective function.

2.2 Cosine Similarity Metric Learning

Compared with distance metric, cosine similarity between two vectors can be
defined as

d2W (xi, xj) =
(Wxi)

TWxj
‖Wxi‖‖Wxj‖

(5)

Given the similar sets S and dissimilar sets D, the objective function can be
shown as

max
∑

(xi,xj)∈S

d2W (xi, xj)− α
∑

(xi,xj)∈D

d2W (xi, xj) (6)

where d2W is defined as Eq.(5)
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In this optimization problem, it is difficult to calculate the derivation of ob-
jective function which is used for gradient descent method. In paper [1], Nguyen
gives the gradient as

∂d2
W (xi,xj)
∂W =

∂(
u(W )
v(W )

)

∂W

= 1
v(W )

∂u(W )
∂W − u(W )

v(W )2
∂v(W )
∂W

(7)

where {
∂u(W )
∂W = W (xix

T
j + xjx

T
i )

∂v(W )
∂W =

‖Wxj‖
‖Wxi‖Wxix

T
i −

‖Wxi‖
‖Wxj‖Wxjx

T
j

(8)

As is shown in Eq.(8), the complexity of the gradient is too high to compute
if the dimensionality of descriptors xi is large. For example, if the descriptors
are high dimensional Fisher Vector (FV) which is about 67586-d in the paper
[8], the cosine similarity metric learning will be inefficient and ineffective for
dimensionality reduction and data classification.

3 Quasi Cosine Similarity Metric Learning

In this section, we first give the objective function of Quasi Cosine Similarity
Metric Learning (QCSML), and introduce the hinge-loss to represent the ob-
jective function. The stochastic gradient descent (SGD) is used to optimize the
objective function.

3.1 Problem Formulation

We begin this section with some notation definitions. Our goal is to learn the
cosine similarity in Eq.(5) from a set of feature space X = {x1, . . . , xn}, xi ∈ Rd.
Obviously, the gradient of the cosine similarity function in Eq.(7)(8) is complex
and if the dimension of feaature d is large, the optimization processing will take
up lots of memory which personal computer cannot afford.

As is shown in Eq.(5), the cosine similarity metric can be written as

d2W (xi, xj) =
(Wxi)

TWxj
‖Wxi‖‖Wxj‖

≥ (Wxi)
TWxj

(‖W‖‖xi‖)(‖W‖‖xj‖)
(9)

because of the inequality ‖ab‖ ≤ ‖a‖‖b‖. Therefore, the cosine similarity metric
can be written as

d2W (xi, xj) ≥
(Wxi)

TWxj
‖W‖2‖xi‖‖xj‖

(10)

Here, to simplify the cosine similarity metric in Eq.(10), we can give the prior
knowledge about the projection matrix W which is represented as

‖W‖2F = Tr(WWT ) =

p∑
i=1

d∑
j=1

W 2
ij = 1 (11)
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where ‖‖F is the Frobenius norm of matrix. And then we normalize the descrip-
tors {xi} in feature space which means ‖xi‖2 = 1, xi ∈ Rd, i = 1, . . . , n.

With these constrains, the cosine similarity metric can be written as

d2W (xi, xj) ≥ d̃2W (xi, xj) = (Wxi)
TWxj (12)

Then we define the label yij represents the similarity or dissimilarity between
a pair of two vectors (xi, xj). Therefore, we can denote a threshold b ∈ R that
the pair is similar or different if the cosine similarity d2W (xi, xj) is upon or below
the threshold b. Therefore, these constrains can be defined as

yij(d̃
2
W (xi, xj)− b) > 1 (13)

where yij = 1 if xi and xj are similar, which means (xi, xj) ∈ S, and yij = −1
otherwise.

According the constrains in Eq.(13), the quasi cosine similarity metric learn-
ing problem can be defined as

min
∑

i,j max
[
1− yij(d̃2W (xi, xj)− b), 0

]
s.t. ‖xi‖2 = 1, xi ∈ S ∪D, i = 1, . . . , n

Tr(WWT ) = 1

(14)

The objective function is to make the margin between the positive and neg-
ative pairs to be large, since it is hinge-loss. The hinge loss function is used for
max-margin classification problem, mostly notably for support vector machine
(SVM).

Due to the only equality constraint and the normalization of the input vec-
tors {xi}, the Lagrange multipliers method can be used to convert the QCSML
problem into an unconstrained problem and the converted objective function
can be written as

min
∑
i,j

max
[
1− yij(d̃2W (xi, xj)− b), 0

]
+ λ(Tr(WWT )− 1) (15)

where λ is the Lagrange multipliers and λ > 0. Because of the WTW is positive
definite matrix, the objective function is convex. The constrain Tr(WWT ) =
‖W‖2F = 1 can also be treated as the regularization to prevent overfitting and
in this aspect, λ can be considered as the trade-off parameters.

3.2 Algorithm and Complexity

Due to the convexity of objective function, we can use the gradient descent
method to get the global value of Quasi Cosine Similarity Metric Learning.

Instead of Conjugate Gradient method[1], we employ stochastic gradient de-
scent (SGD) method[9] to optimize the objective function due to large dataset.
The projection matrix W can be updated as following

Wt+1 =

{
Wt if yij(d

2
W (xi, xj)− b) > 1)

Wt − α∂f(W )
∂W otherwise

(16)
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Algorithm 1: Quasi Cosine Similarity Metric Learning Optimization

Input : Train data: (X, y), X = {xi} ⊆ Rd, ‖xi‖ = 1, yi ∈ {−1, 1}
Output: The parameters:Θ = {W, b}
begin

Parameters initialization;

/* Initialize W */

Set Winit =PCA whitening(X);

/* Initialize b */

(Xs, ys) =sample(X,y);
φs = WXs;

scores = d̃2w(xi, xj) ∀xi, xj ∈ Xs;
binit = accuracy best(scores, ys);

/* SGD iteration */

for t = 1 to n do
switch yt do

case positive

score = d̃2W (xi, xj) ∀xi, xj ∈ Xt;
if score < b+ 1 then

Wt+1 = Wt − α ∂d̃2W
∂W

;
bt+1 = bt − γb;

break;

case negative

score = d̃2W (xi, xj) ∀xi, xj ∈ Xt;
if score > b− 1 then

Wt+1 = Wt + α
∂d̃2W
∂W

;
bt+1 = bt + γb;

break;

return Θ = {W, b};

where α is learning rate, t is the number of iterations and f(W ) represents the
objective function. The gradient of objective function is written as

∂f(W )

∂W
= yijW (xix

T
j + xjx

T
i ) + λW (17)

where λ is the parameter which is set by us. The threshold b can be updated by

bt+1 =

{
bt if yij(d̃

2
W (xi, xj)− b) > 1)

bt − γbyij otherwise
(18)

where γb is the threshold bias.
We can use SGD to update the parameters Θ = (W, b). The detail of Quasi

Cosine Similarity Metric Learning is given in Algorithm.1. The choice of param-
eters α and λ is important for the optimization. The learning rate α controls the
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speed of gradient descent for the optimization processing. With the SGD method
for optimization, the learning rate α should be smaller than L-BFGS[10] or con-
jugate gradient[1] because we calculate the gradient only use one sample (xi, xj)
from data set at every iteration. Moreover, the trade-off parameter λ is also
important for optimization if it is suitable or not. Although the objective func-
tion is convex, we also need to give a good initialization for projection matrix
W due to the SGD method. K-means and PCA-whitening are both choices for
initialization and the effectiveness will be performed in section 4.

According to the Algorithm.1, the complexity of computing the gradients
of objective function is O(p × d) where d is the dimensionality of descriptors
xi and p is the dimension of reduction by projection matrix W . Therefore, the
complexity of QCSML algorithm is O(t×p×d) where t is the number of iterations
to update the projection matrix W by SGD. It is faster than CSML which the
complexity is O(r × b × g × s × d × m), where r is the number of iterations
used to optimize the projection matrix, b is the number of values tested in cross
validation process, g is the number of steps in the Conjugate Gradient method, s
is the number of training data, d and m are the dimensions of projection matrix.
And the experiments of QCSML for time consuming are in next section.

4 Experiments

In this section, we employ the proposed Quasi Cosine Similarity Metric Learning
(QCSML) on various benchmark UCI datasets and LFW datasets[11] for face
recognition.

4.1 UCI Datasets Classification

We evaluate the algorithm on three UCI datasets: Iris3, Ionosphere4 and Wine5.
And we deal with three UCI benchmark as following:

1. Iris dataset: This dataset has 150 instances for 3 classes (50 in each of 3
classes). The dimension of descriptors is 4 and we use 120 instances for
training (40 in each class) and 30 instances for testing.

2. Ionosphere dataset: This dataset has 351 instances for binary classification
task, which dimension of each feature is 34. We use 200 instances for training
data and the rest for testing.

3. Wine dataset: This dataset has 178 instances for 3 classes and the number
of attributes is 13. We consider 150 instances as training data and the rest
as testing data.

The proposed QCSML method is compared with the following algorithm for
two aspects: classification performance and computational costs.

3 https://archive.ics.uci.edu/ml/datasets/Iris
4 https://archive.ics.uci.edu/ml/datasets/Ionosphere
5 https://archive.ics.uci.edu/ml/datasets/Wine
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Table 1. Classification error rates(%) for different distances across various UCI bench-
mark datasets.

Algorithm Iris Ionosphere Wine

Euclidean 4.00 14.86 4.5

InvCov 8.67 17.71 43.82

LMNN[12] 3.34 14.29 2.25

ITML[5] 3.00 17.14 3.94

SDML(Identity Matrix)[6] 2.00 13.71 0.5618

SDML(Inverse Covariance)[6] 2.00 12 0

QCSML(Random Projection) 4.34 13.49 5.81

QCSML(K-means) 1.04 7.99 0

QCSML(PCA-whitening) 2.22 6.93 0

Iris Ionosphere Wine
LMNN 1.2300 6.4400 2.8200
ITML 0.0155 0.0209 0.3945
SDML 0.0071 0.0083 0.0580
QCSML 0.0052 0.0135 0.0108
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Fig. 1. Training time used different distance metric learning on different datasets
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1. Euclidean: The squared Euclidean distance ‖xi − xj‖22 as a baseline algo-
rithm for classification.

2. InvCov: A Mahalanobis distance parameterized by the inverse of sample
covariance. It is equivalent to performing PCA over the input data and then
computing the squared Euclidean distance in the transformed space.

3. LMNN: Large margin nearest neighbor method is proposed by [12]. This
method trains the classifier to separate different classes by a large margin.

4. ITML: Information-theoretic metric learning is proposed by [5]. It formu-
lates to learn the Mahalanobis matrix by optimizing the differential relative
entropy loss function.

5. SDML: Sparse distance metric learning is proposed by [6]. It formulates the
loss funtion by log-determinant divergence with a prior knowledge M0 and
the L1-norm regularization for sparsity.

The experimental result is illustrated in Table 1. We can see that the proposed
QCSML has the smaller error rates across the datasets compared with other
distance metric learning. On the other hand, the PCA-whitening initialization
method performs better than other initialization.

Finally, we compare the computational costs of these metric learning algo-
rithms. Figure 1proves the computing efficiency of the proposed QCSML algo-
rithm. We find our method is faster than LMNN, ITML and SDML in most
cases. Moreover, with the different gradient descent method employing, our al-
gorithm will be faster if the input data is large and high dimensional because
SDML and ITML algorithm need to compute the gradient by all the training
data every iteration, while QCSML only need one sample per each iteration.

4.2 LFW Dataset Face Recognition

In this section, we show the performance of the proposed QCSML metric learning
on LFW dataset6 in detail.

LFW dataset contains 13233 images of 5749 people for face verification. For
evaluation, the face data is divided in 10 folds which contain different identities
and 600 face pairs for evaluation. There are two evaluation setting about LFW
training and testing: restricted and unrestricted. In restricted setting, the pre-
define image pairs is fixed by author (each fold contains 5400 pairs for training
and 600 pairs for testing). And in unrestricted setting, the identities of people
within each fold for training is allowed to be much larger.

For face verification, it is also important to extract robust descriptors for
representing the images. In this paper, we employ Fisher Vector (FV)[13] which is
widely used in image classification[14], image retrieval[15] and face recognition[8].
We extract dense SIFT for each aligned image and learn Gaussian Mixture Model
(GMM) parameters by EM algorithm. Then the local descriptors are encoded
into Fisher Vectors via GMM parameters.

6 http://vis-www.cs.umass.edu/lfw/
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Table 2. Comparison of QCSML method with other state-of-the-art methods in re-
stricted setting of LFW.

Method Dimension Accuracy(%)

Combined B/G sample based methods, aligned[16] - 86.83± 0.34

LDML, funneled[17] - 79.27± 0.60

DML-eig combined, funneled & aligned[18] - 85.65± 0.56

LBP+CSML, aligned[1] 200 85.57± 0.52

Sub-SML, funneled & aligned[3] 300 86.73± 0.53

FV+PCA-Whitening funneled & aligned[8] 128 78.60± N/A

Fisher Vector Faces, funneled & aligned[8] 128 87.47± 1.49

FV+QCSML, aligned 256 87.10± 1.25

FV+QCSML, aligned 128 87.47± 1.99

FV+QCSML, aligned 64 85.20± 1.39

FV+QCSML, aligned 32 84.53± 1.74

The Receiving Operating Characteristic Equal Error Rate (ROC-EER) mea-
sure is used for evaluations. In the restricted setting, we compare the pro-
posed QCSML method with Combined B/G sample based method[16], LDM-
L[17], DML-eig combined method[18], LBP-CSML[1], SML[3] and Fisher Vector
Face[8]. The face verification results are shown in Table 2. Compared with the
compressed FV after PCA-whitening, our QCSML method improve the accuracy
about 9% and it is the same performance as the Large Margin Dimensionality
Reduction (LMDR) which employed metric similarity distance[8]. Besides, the
proposed QCSML obtains 87.47% verification rate, which mostly outperforms
other state-of-the-art method in the restricted setting.

Table 3. Comparison of QCSML method with other state-of-the-art methods in un-
restricted setting of LFW.

Method Accuracy(%)

LDML-MKNN, funneled[17] 87.50± 0.40

PLDA combined, funneled & aligned[19] 90.07± 0.51

Joint Bayesian combined[20] 90.90± 1.48

Sub-SML combined, funneled & aligned[3] 90.75± 0.64

Fisher Vector Faces, funneled & aligned[8] 93.03± 1.05

FV+QCSML, aligned 92.33± 1.12

Moreover, we evaluate the proposed QCSML method in unrestricted setting
of LFW. The results of our method performance are shown in Table 3 and
Figure 2. Our method achieves 92.33% accuracy, closely matching the Fisher
Vector Face[8], which achieves 93.03%. According to the Table 3, it is obvious
that our method obtains 92.33% verification rate and outperforms most state-
of-the-art methods such as LDML-MKNN[17], PLDA[19], joint Baysian[20] and
Sub-SML[3]. Although our method cannot obtain higher verification rate than
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Fig. 2. ROC curves of our method and the state-of-the-art techniques in LFW-
unrestricted setting. The left is shown in Linear-Axis and the right is in Log-Axis.

Fisher Vector Faces[8], we can find our method performs better at false accept
rate (false positive rate) 1% point than them in Figure 2(b), which means our
method has more valuable for practical systems because the threshold is often
selected when the false accept rate is at 0.1% or 1% point instead of equal error
rate.

5 Conclusion

In this paper, we proposed the Quasi Cosine Similarity Metric Learning (QCSM-
L) method for classification and face verification tasks. We employ normalization
and Lagrange multipliers to convert the cosine similarity metric into a new for-
mulation and it makes the computation faster for high dimensional features and
the complexity of QCSML is O(t × p × d) which precedes CSML method. In
practice, our QCSML performs considerably better on both UCI classification
datasets and LFW dataset. In the future, we plan to investigate the optimiza-
tion processing to make the method more effective and efficient and extend our
QCSML to other applications.

Acknowledgement. This work was jointly supported by Beijing Natural Sci-
ence Foundation under Grant No.4122049, Beijing Higher Education Young Elite
Teacher (No.YETP0381), and the Fundamental Research Funds for the Central
Universities(FRF-JX-12-002).



12 Xiang Wu, Zhi-Guo Shi and Lei Liu

References

1. Nguyen, H.V., Bai, L.: Cosine similarity metric learning for face verification. In:
Computer Vision–ACCV 2010. Springer (2011) 709–720

2. Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.: Tagprop: Discriminative
metric learning in nearest neighbor models for image auto-annotation. In: Com-
puter Vision, 2009 IEEE 12th International Conference on, IEEE (2009) 309–316

3. Cao, Q., Ying, Y., Li, P.: Similarity metric learning for face recognition. In:
Computer Vision (ICCV), 2013 IEEE International Conference on, IEEE (2013)
2408–2415

4. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning with
application to clustering with side-information. Advances in neural information
processing systems (2003) 521–528

5. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric
learning. In: Proceedings of the 24th international conference on Machine learning,
ACM (2007) 209–216

6. Qi, G.J., Tang, J., Zha, Z.J., Chua, T.S., Zhang, H.J.: An efficient sparse metric
learning in high-dimensional space via l 1-penalized log-determinant regularization.
In: Proceedings of the 26th Annual International Conference on Machine Learning,
ACM (2009) 841–848

7. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with
the graphical lasso. Biostatistics 9 (2008) 432–441

8. Simonyan, K., Parkhi, O.M., Vedaldi, A., Zisserman, A.: Fisher vector faces in the
wild. In: Proc. BMVC. Volume 1. (2013) 7

9. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: NIPS. Volume 4.
(2007) 2

10. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-bfgs-b: Fortran sub-
routines for large-scale bound-constrained optimization. ACM Transactions on
Mathematical Software (TOMS) 23 (1997) 550–560

11. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
A database for studying face recognition in unconstrained environments. Technical
report, Technical Report 07-49, University of Massachusetts, Amherst (2007)

12. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin
nearest neighbor classification. Advances in neural information processing systems
18 (2006) 1473

13. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image cate-
gorization. In: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, IEEE (2007) 1–8

14. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale
image classification. In: Computer Vision–ECCV 2010. Springer (2010) 143–156

15. Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-scale image retrieval with
compressed fisher vectors. In: Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, IEEE (2010) 3384–3391

16. Wolf, L., Hassner, T., Taigman, Y.: Similarity scores based on background samples.
In: Computer Vision–ACCV 2009. Springer (2010) 88–97

17. Guillaumin, M., Verbeek, J., Schmid, C.: Is that you? metric learning approaches
for face identification. In: Computer Vision, 2009 IEEE 12th International Con-
ference on, IEEE (2009) 498–505

18. Ying, Y., Li, P.: Distance metric learniying2012distanceng with eigenvalue opti-
mization. The Journal of Machine Learning Research 13 (2012) 1–26



Quasi Cosine Similarity Metric Learning 13

19. Li, P., Fu, Y., Mohammed, U., Elder, J.H., Prince, S.J.: Probabilistic models
for inference about identity. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 34 (2012) 144–157

20. Chen, D., Cao, X., Wang, L., Wen, F., Sun, J.: Bayesian face revisited: A joint
formulation. In: Computer Vision–ECCV 2012. Springer (2012) 566–579


