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Abstract. The meteorological visibility estimation is an important task,
for example, in road traffic control and aviation safety, but its reliable
automation is difficult. The conventional light scattering measurements
are limited into a small space and the extrapolated values are often erro-
neous. The current meteorological visibility estimates relying on a single
camera work only with data captured in day light. We propose a new
method based on feature vectors that are projections of the scene im-
ages with lighting normalization. The proposed method was combined
with the high dynamic range imaging to improve night time image qual-
ity. Visibility classification accuracy (F1) of 85.5% was achieved for data
containing both day and night images. The results show that the ap-
proach can compete with commercial visibility measurement devices.

1 Introduction

Meteorological visibility is an important measure in many fields such as road
traffic safety, flight control and aviation safety, as well as coastal and marine ac-
tivities. Visibility is usually reduced by different sized particles or aerosols, such
as fog, rain, or snow [1]. In addition to precipitation, visibility can be reduced by
air pollution which levels can be monitored using visibility estimation[2]. Tradi-
tionally, visibility is estimated by a human observer who estimates the visibility
range from known distant objects like forest line, stars or other light sources.
Manual observations are not only costly and time consuming but also biased by
the individuals.

The visibility degradation can be modeled using physical models that are
based on light absorption and scattering in the air. One commonly applied model
is based on the Beer-Lambert law that states that the light intensity drops ex-
ponentially as a function of the traveled distance and the medium absorption
coefficient. The non-imaging based measurements with lasers are typically car-
ried out in very small volumes and the results are extrapolated to cover distances
up to 20 kilometers away from the actual measurement location. Local weather
phenomenon at some distance cannot be captured by these methods.

Cameras enable monitoring affordably panoramic scenes at all directions.
Tan [3] has applied random Markov fields on single images to improve the image
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quality in low visibility images, but no metric visibility measurements were at-
tempted. The Beer-Lambert law has been also applied with images, which allows
learning of simple regression models for visibility estimation [4, 5].

The observations are usually required to be carried out continuously. So far
the large illumination changes have not been addressed and the image based
estimation methods are usually shown to work only at day light or during night
but not both. Du et alia[6] have used two cameras at different distances to cap-
ture images of the same target during night and transmission based estimation
was obtained. The transmission measurements are limited on a line of sight and
multiple cameras are required. Also distant light sources and scattering models
have been used to estimate the visibility during night[7]. That approach has
limited usability during the day time as the sky luminance is often dominant
over the man-made light sources. We suggest an approach that does not rely on
external light sources and use a single camera to estimate the visibility 24 hours
a day.

We show that commonly applied gradient and light attenuation based re-
gression models fail in continuous monitoring. We propose a new method where
Retinex filtering is used to create light intensity invariant images that are used for
projection based features. The visibility estimation is based on machine learning
with support vector machines. Further, HDR techniques have not been previ-
ously utilized in metric visibility estimation and we show that it is beneficial
when combined with the proposed feature classification. The proposed method
is targeted for scenes with a visible horizon, like at air ports or city skylines.

2 Related Work

Human observations are still widely used in visibility estimation as no extra
equipment is required. The estimation is based on known distant objects whose
contrast against the background is assessed and, if the visibility vary in different
directions, usually only the smallest visibility is reported. Manual observations
are relatively expensive and may be biased by the observer.

The visibility sensors do not directly measure how far one can see but instead
the clarity of the air is measured. Locality of the non-imaging sensors is a major
problem that would require multiple measuring sites, which usually is not cost
efficient. Cameras can be utilized for estimating visibility, but large lighting
changes limit the current methods to day time imaging. We discuss these issues
in the following chapters in more detail.

2.1 Non-Imaging Based Estimation

Non-imaging based automatic measuring systems rely either on light scattering
or transmission. Light scattering measurements are carried out in a small vol-
ume, for example, a cubic decimeter and the estimates are extrapolated to cover
ranges up to 20 kilometers. Transmission meters measure the intensity drop in
a light beam on a given path. While not as point-like as the scattering methods,



Image Based Visibility Estimation During Day and Night 3

these are also considered local measurement devices. Both measuring methods
are considered too expensive to be utilized in numbers for more comprehensive
coverage.

The extrapolated visibility measurements do not always correspond to the
true situation at some distance. For example, by visual inspection the Vaisala
FD12P forward scattering device used in this study, produced estimates that
were wrong in about 23% of the 6650 captured images. Figure 1 shows few
examples of images and visibility estimates from the device where the measure-
ments are clearly misleading. Too high visibility estimates announced by aviation
traffic control are problematic at airports where reliable information is required
24 hours a day. This is one of the main motivations behind this work.

Fig. 1. Examples of cases where the light scattering equipment failed: (left,day) visi-
bility measure 8180 meters and (right,night) 13 kilometers. The proper visibilities are
less than 1000 meters and less than 5 km respectively. The clearly false measurements
cause problems for example in aviation during day and especially at night.

2.2 Image Based Models

The existing visibility measures are typically based on contrast or gradients
computed from the captured images. Multivariate linear regression, for example,
can be used to learn visibility models from edges obtained using Sobel-filters [4].
The model coefficient of determination values (R2) ranged between 0.780 and
0.845 for day time images.

Babari et al. also used gradients to estimate a physical model described by
the Beer-Lambert law [5]. They reported the average errors of 30% (R2 between
0.89 and 0.95) for images taken during day with luminance between 10 and 8000
cd/m2. Their approach uses Sobel filtering to extract gradient magnitudes from
an image I and the response is weighted by an estimate of the Lambertianess
Wx,y of the pixels in the scene for a contrast measure:
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where [∗] denotes convolution, and [·] point wise multiplication at pixels x, y.
The Wx,y is calculated as the correlation of pixel intensities respect to the sky

illumination over time. The final measure Ê is formed by integrating the response
G over the image. The obtained responses are used to form a regression model
with parameters A and B that relates the measure to the Beer-Lambert law:

Ê = A+B log (Vmet) . (2)

The inverse of the model can be used to convert the measured response to
metric visibility Vmet. Figure 2 shows a fit to data containing both day and night
images from Matilda database[5].

Fig. 2. Model (2) fitted on day and night data from the Matilda database and combined
data. Only the day data fits the model with a reasonable coefficient of determination,
and weighting with a surface Lambertianess estimate improves the fit as shown in
[5]. However, data is separated so that no static weighting can remove all the lighting
covariance from the data and the day and night data is clearly separated to sub groups.

The data clearly separates into two groups and a single model is clearly not
enough. The changing sky luminance cannot be handled with the regression
based models. The ambient luminance can change over a day radically at the
northern and southern hemisphere making the reliable estimation of the Lam-
bertian weights Wx,y almost impossible in these scenarios, at least the estimation
should be adaptive instead of static. Further, as the weighting is based on the
illumination of the sky this cannot be done during night.

Other approach is to use machine learning to categorize the samples into
visibility classes. Yin et al. [8] used support vector regression to learn visibility
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from regions of interest where the features were formed from the mean local
contrast of 4x4 sub blocks resulting in 16-dimensional features for each image. A
mean success ratio calculated from the reported results show 81% performance
for day time images. In this case poor visibility was most often misinterpreted,
which is the most important class to be classified correctly.

3 Proposed Method

The main problem with the existing image based visibility estimation is the co-
variance of the extracted response with the ambient illumination. The estimation
of the ambient illumination based on the sky is not reliable as clouds change and
reflect light and at night there is only light from moon and ground reflections.

We suggest forming a new, lighting invariant, descriptor for scene visibility
classification. The features are formed by projecting Retinex filtered images on
the horizontal direction corresponding to different distances in the view as shown
in Fig. 3. While we propose to use HDR imaging to capture the images, the
approach is shown to work also with conventional low dynamic range images.
The features are further processed for robustness by taking the absolute values
of their gradients which are normalized. The visibility estimation is then finally
based on support vector machine based classification. In the following, the steps
are described in more detail.

3.1 HDR Imaging for Visibility Estimation

Luminance of the night sky is typically in range of millicandelas per square
meter while street lamps are capable of producing some tens of kilocandelas per
square meter. Therefore night scenes with urban surroundings have a dynamic
range of six to seven decades, which is on the lower limit of an adapted human
eye dynamic contrast ratio. Digital cameras commonly use analog to digital
converters with 8 to 16 bit precision enabling at most contrast ratios of 1:65536,
which is not enough for representing the low light scenes as can be seen from Fig.
4. Short exposure times enable sufficient capture of the street lights vicinity but
unilluminated vegetation is poorly shown. Long exposure times capture even
clouds and the stars from the night sky but the lit streets are severely over
exposed.

High dynamic range (HDR) imaging in combination with tone mapping tech-
niques is typically used to produce visually pleasing images to overcome the lim-
ited camera sensor and display dynamic ranges [9]. It is also possible to enhance
an image quality by producing HDR images without using physical models [10,
11].

HDR images are commonly constructed by solving the camera response func-
tion (CRF) that describes the relation of recorded intensity and the exposure
time to the scene radiance. Inverse CRF is then used to linearize the collected
data which is combined for a radiance map [12]. Further the radiance map is used
with tone mapping to represent the color information correctly for the human
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Fig. 3. An exposure stack of images is captured for a high dynamic range image, which
is Retinex filtered and the rows of the image are projected on the y-axis for the feature
vector.

Fig. 4. Six subsequent images from an exposure time stack captured during a night.
The exposure times are 72.9ms, 218.7ms, 656.1ms, 1.968s, 5.905s, and 11.810s.
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viewer using low dynamic range displays or print outs[13]. It has been shown
that a dense set of images produces an improved signal to noise ratio for HDR
radiance map compared with a minimal number of images [14]. The dense image
sampling strategy is selected to suite the needs of this application.

There are no real-time requirements for the system and it is enough to have
an updated estimate every ten minutes. To capture stacks of images, exposure
times between 25 microseconds and 23.6 seconds were used yielding maximum
total exposure time of 35.4 seconds. This enables the reconstruction of HDR
images under a large range of lighting conditions. In this work, we are more
interested in the normalization of the lighting changes and the visibility than
the esthetics of the images.

An adaptive method was utilized to stack the HDR images. As the sensor
behaves here linearly (see Section Data, Fig. 7, the fusion of the images IHDR

in an exposure stack is an integration of the intensity values Ii over the pixels
weighted with the exposure times ti:

IHDR =

N∑
i

Ii · ti. (3)

The number of used images N , was selected by estimating the contrast in
result image IHDR after each summing step and selecting the result image with
the highest obtained contrast at the end. Fig. 5 shows an example of the com-
bined images for a scene during a night and a day. The night image corresponds
to the inputs shown also in the Fig. 4. The HDR image clearly contains more
information than the single input images.

Fig. 5. HDR images obtained in a night and during a day. The images are tone mapped
for viewing using contrast limited adaptive histogram equalization (CLAHE)[15].

3.2 Retinex Filtering

Multiscale retinex (MSR) filtering was originally developed to improve the visual
quality of both 8-bit images and wide dynamic range images [10]. MSR aims for
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creating images that match lightness and color perception of human vision. While
the filtering is aimed for color images, it handles each color channel separately
and thus can be used also on gray scale images. The response RMSR for MSR
is a weighted sum of single scale retinex filters Ri where the Gaussian filter Fi

scale ci is varied:

RMSR =

N∑
n=1

wnRn, (4)

Ri(x, y) = logI(x, y) − log [Fi(x, y) ∗ I(x, y)] , (5)

Fi(x, y) = Ke−r2/c2i . (6)

The parameters suggested in [10] were applied here; N = 3, ci = 15, 80, 250
and wi = 1/3. For the r = sqrt(x2 + y2) 9x9 local window was applied. The
applied filter does not produce here visually stunning results, but the differences
between day and night time images are very small in visual inspection (see Fig.
6).

3.3 Feature Extraction

The retinex filtering can be characterized as high pass filtering in logarithmic
space, which makes the result much less susceptible towards the lighting changes.
The scene distance from the camera increases towards to upper part of the image.
According to (2) the contrast or here the high frequencies are reduced with the
increased distance in case of visibility degradation.

The projection of the frequency response in the image on y-axis can be con-
sidered a good descriptor for the visibility when the horizon is captured levelly
in the images. In this work, no image rectification was used but the camera was
only positioned carefully to capture horizon images. In practice, the feature can
be formed by summing up the retinex filter response row wise over the image.
The robustness is further increased by taking a gradient of the y-projection. Fi-
nally, the magnitude vector of the obtained gradient is normalized in range [0,1].
The features were orthogonalized using principal component analysis (PCA).
The best results were obtained containing all the components of the PCA trans-
formation indicating that all the feature vector components contain relevant
visibility information that is useful in classification.

The Fig. 6 exhibits examples of retinex filtered images and the corresponding
feature vectors. The difference between night and day images is visually com-
pared small. The corresponding good visibility and poor visibility feature vectors
appear very similar.

3.4 SVM Training

The feature vectors extracted from the images were used to learn the required
visibility classes. Here support vector machines with RBF kernels were utilized
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Fig. 6. Retinex filtered images in good (left) and poor visibility (right) during day (up)
and night (bottom) and the corresponding feature vectors.

to learn the five classes named in Tab. 1. The applied learning strategy for the
given class was one-against-all. In the multiclass classification the distance from
the decision boundary of each class was used as the classification score and the
largest distance was selected as a winner.

The learning parameters for soft margin C and the kernel Gaussian variance
σ were optimized using a grid search and the performance was tested using leave
one out cross validation for Matilda data and 5-fold cross validation for HDR
data. F1-measure, that is the harmonic mean of precision and recall, was used
as an accuracy measure.

4 Data

Images from two sources were used and all images top part of the sky was
cropped out. With the Matilda database 31 pixel rows, containing time stamps,
were cropped out leaving 100 pixel rows sky and 348 rows ground. With the
HDRvisMe data 40 pixel rows of the sky were left leaving 511 pixel rows of
ground. The Matilda database was utilized for the experiments with 8-bit images
[5]. The data consist of CCTV camera images and meteorological optical range
and sky luminance values measured with meteorological instruments. The similar
division into visibility classes as in [5] was utilized, with the distinction that also
images having visibility above 15 km were included. Tab. 1 contains the number
of samples in each of the class. Images with luminance below 10 cd/m2 were
treated as night images. It should be noted that in [5] only day images and four
first classes were utilized.

For HDR data set (HDRvisMe)1 a 14 bit gray scale camera (AVT, Prosilica
GT1290) was used for capturing the images. It was housed in a weatherproof
casing with a heater element to prevent water condensation in the casing and
on the case window. The setup was installed on a roof about 30 meters from

1 The data and Matlab implementation are available upon a request from the authors.
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Table 1. Visibility classes and number of samples.

Database <400m 400-1000m 1-5km 5-15km >15km

Matilda day 17 6 26 109 49
night 9 3 44 148 26
total 26 9 70 257 75

HDRvisMe day 48 58 208 725 1765
night 15 68 393 955 1339
dawn and dusk 10 20 104 317 625
total 73 146 705 1997 3729

the ground. The camera was secured so that image registration due to camera
movement was not required. For comparison also here the data was divided to
day, night, and dusk&dawn sets based on the capture time. Data was manually
labeled to the visibility classes in Tab. 1.

Vaisala FD12P light scattering measurement device was used to collect the
reference visibility data. The manufacturer of FD12P gives the error tolerance
of ±10% for the range 10-10000 m and ±20% for range 10-50 m and instrument
consistency of 4%. It should be noted that the device has the sampling volume
of 0.1 liters.

Lack of the color filters in the camera removes the need for separate cam-
era response calibration for color channels. The color filters would also reduce
slightly the incident light hitting the sensor. The images were captured using
manual settings so that exact parameters, such as gain and exposure time, were
used. Also all the in-build data manipulations, including gamma correction, were
disabled. This enabled the near linear behavior of the camera sensor, which was
ensured by inspecting the camera response curve. This was constructed by se-
lecting uniform intensity patches from sets of images with different exposure
times, which were further reduced to median values for each of the exposure
time settings. These values were converted to relative intensity values using ex-
posure times as presented in Fig. 7. In addition the method from Mitsunaga and
Nayar [16] was used to fit polynomials with different degrees. The best fit was a
straight line, proving the linear response of the imaging setup.

5 Results and Discussion

The proposed method reached 86.5% F1-accuracy for the combined day and
night images in the Matilda database with leave one out cross validation (soft
margin C = 3.5 and σRBF = 1.05) . With separation to day and night, the
accuracies were 85.2% and 82.6% respectively. One would expect that the clas-
sification would work better with separated data sets, but apparently the data
contains a limited number of samples, especially the second class for visibility
range 400-1000 meters. This can also be seen in the confusion matrix in Fig. 8
as large variation with the second class.



Image Based Visibility Estimation During Day and Night 11

Fig. 7. The camera response function for the utilized camera.

A more comprehensive data set was captured for HDR testing with over 10
times more images available than in Matilda data set. Here for the combined
day and night data, the 5-fold cross validation yielded 85.5% F1-accuracy. With
the HDR data, the confusion matrix is less scattered around the true classes
and the result is more reliable than with the low dynamic range image set.
Data separated to day and night sets resulted in 86.2% and 85.0% classification
accuracy respectively. The utilized training parameters here for SVMs were for
soft margin C = 5.3593 and for the RBF-kernel shape σRBF = 1.5625 with all
classes.

Fig. 8. Confusion matrices for all Matilda data (left) and for the HDR data (right).

Classifiers were tested also by using only the day data for training and night
data for testing and vice versa. Here the mean accuracy was 71%, showing that
some lighting invariance has been obtained for the descriptor. The slight drop
indicates that the invariance is not perfect, but with samples of all possible
lighting conditions the changing illumination can be handled with the descriptor
and SVMs.
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It should be noted that the HDR data was manually annotated to the visi-
bility categories as the visibility sensor was realized to produce correct estimates
for about 77% of input images. However, it is difficult also for human to estimate
visibilities around 10 km in the wild and here annotation was done based on im-
ages only. Therefor, some errors may exist in annotations. The confusion matrix
with HDR data supports this assumption as the first two classes are classified
more robustly than the problematic classes 1-5 km and 5-15 km, while the clear
weather was easier to classify for both the human and the proposed system.

6 Conclusions

We show the first time that also night time images can be used for estimating
the visibility using a single camera. High dynamic range imaging can be used
to capture images under varying lighting conditions and combined with Retinex
filtering the illumination changes become almost negligible. The projection of
filtered images on the horizontal direction captures the visibility degradation as
function of distance which can be used for visibility classification.

The proposed features were used to train support vector machines for five
visibility classes using data from two different sources. The image sets resulted in
85% accuracy measured using F1-score. The confusion matrices show the HDR
data set to be more reliable than the CCTV-based image set. While the sample
size differences in the data sets leave room for speculation, HDR imaging can be
considered a good way to capture images in varying lighting conditions.

It was shown that the method reached 85% classification accuracy, which
can be safely stated to be at least on the same level or better than the reference
commercial light scattering instrument, that produced visually correct results in
77% of the cases. The confusion matrices show that the proposed classification
approach tends to misclassify some of the samples to the neighboring classes,
which can be the indication of a data annotation problem, while the commercial
instrument failed some times grossly. Also the classifiers were trained using the
same training parameters for all the classes and it can be expected that some
improvement can be obtained using more advanced machine learning approach.

The main criticism for the method, and in fact for most of the image based
approaches, can be considered to be the need for training data. It can be very
time consuming to gather the required training data that contains all the pos-
sible weather conditions. For future work, one might consider if computational
methods can be used to generate simulated training data, so that only a few
good visibility images in varying lighting conditions would be enough for the
training.
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5. Babari, R., Hautière, N., Dumont, È., Paparoditis, N., Misener, J.: Visibility mon-
itoring using conventional roadside cameras emerging applications. Transportation
Research Part C: Emerging Technologies 22 (2012) 17 – 28

6. Du, K., Wang, K., Shi, P., Wang, Y.: Quantification of atmospheric visibility with
dual digital cameras during daytime and nighttime. Atmospheric Measurement
Techniques (2013) 2121–2130

7. Narasimhan, S., Nayar, S.: Shedding light on the weather. In: IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, 2003. Proceedings.
(2003) I–665–I–672 vol.1

8. Yin, X.C., He, T.T., Hao, H.W., Xu, X., Cao, X.Z., Li, Q.: Learning based visibility
measuring with images. In Lu, B.L., Zhang, L., Kwok, J., eds.: Neural Information
Processing. Volume 7064 of Lecture Notes in Computer Science., Springer Berlin
Heidelberg (2011) 711–718

9. Cad́ık, M., Wimmer, M., Neumann, L., Artusi, A.: Evaluation of HDR tone map-
ping methods using essential perceptual attributes. Computers & Graphics 32
(2008) 330 – 349

10. Daniel J. Jobson, Z.u.R., Woodell, G.A.: A multiscale retinex for building the gap
between color images and the human observation of scenes. IEEE Transactions on
Image Processing 6 (1997) 965–976

11. Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion: A simple and practical
alternative to high dynamic range photography. Computer Graphics Forum 28
(2009) 161–171

12. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from
photographs. In: Proc. of the 24th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’97 (1997) 369–378

13. Kirk, A.G., O’Brien, J.F.: Perceptually based tone mapping for low-light condi-
tions. In: ACM Transactions on Graphics. Volume 30(4) of SIGGRAPH ’11. (2011)
42:1–10

14. Barakat, N., Darcie, T., Hone, A.: The tradeoff between snr and exposure-set size
in hdr imaging. In: 15th IEEE International Conference on Image Processing 2008.
(2008) 1848–1851

15. Zuiderveld, K.: Contrast limited adaptive histograph equalization. In: Graphics
Gems IV, Academic Press (1994) 474–485

16. Mitsunaga, T., Nayar, S.: Radiometric self calibration. In: IEEE Conference on
Computer Vision and Pattern Recognition. Volume 1. (1999) 374–380


