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Abstract. Most of the existing methods for measuring the inter-concept
distance (ICD) between two concepts from their image instances use
only a single kind of visual feature extracted from each instance. How-
ever, a single kind of feature is not enough for appropriately measuring
ICDs due to a wide variety of perspectives for similarity evaluation (e.g.,
color, shape, size, hardness, heaviness, and functions); the relationships
between different concept pairs are more appropriately modeled from dif-
ferent perspectives provided by multiple kinds of features. In this paper,
we propose extracting two or more kinds of visual features from each
image instance and measuring ICDs using these multiple features. More-
over, we present a method for adaptively weighting the visual features
on the basis of their appropriateness for each concept pair. Experiments
demonstrated that the proposed method outperformed a method using
only a single kind of visual feature and one combining multiple kinds of
features with a fixed weight.

1 Introduction

Inter-concept distance measurement (ICDM), which is a problem of computing
the distance between two concepts, plays an important role in various vision
applications including image retrieval, automatic image annotation, indexing,
and clustering. For instance, for image retrieval, query suggestion and expansion
based on ICDM can help to bridge the intention gap [1] between user’s search
intent and input queries. Also, for automatic image annotation, consistency of
annotation tags associated to an image can be improved by ICDM.

In the past decade, several methods for measuring inter-concept distances
(ICD) have been proposed [2–9]. These methods can be roughly divided into
three categories: ontology-based, text-based, and image instance-based. The last
one, on which we focus in this paper, has been most actively studied in recent
years. The general procedure of image instance-based ICDM for two concepts u
and v is as follows: First, a set of images annotated with u and another annotated
with v are gathered. Then visual models of u and v are constructed by using
the respective image set. Finally, the dissimilarity score between the two visual
models is calculated and used as the ICD between u and v.

In the above procedure, a visual model of each concept is generally con-
structed using visual features extracted from each image instance. Local de-
scriptors including scale invariant feature transform (SIFT) [10] and speeded
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up robust features (SURF) [11] are often used for this purpose, but any kind of
visual feature such as color, shape, edge, and texture can also be used. Neverthe-
less, most image instance-based methods use only a single kind of visual feature
for all concept pairs [7, 8]. Actually, there are various perspectives for measuring
ICDs. For instance, the ICDs between concrete concepts such as object (e.g.,
animals and vehicles) can be measured from the perspectives of color, shape,
size, heaviness, functions, and so on. ICDM methods should take into account
these various perspectives as widely as possible. However, a single kind of visual
feature can only provide a single perspective.

Humans adaptively select appropriate perspectives for measuring the ICD
for each concept pair. For instance, humans would give a low distance to the
concept pair (cat, tiger) from the perspective of shape, although the sizes of
cats and tigers are quite different. This fact indicates that only using multiple
kinds of visual features is not enough for measuring good ICDs; it is necessary to
adaptively select or weight the features in accordance with their appropriateness
for each concept pair. Fan et al. have proposed an ICDM method with multiple
kinds of visual features [9], but it equally uses all kinds of visual features with
the same level of importance.

In this paper, we propose the combined use of multiple kinds of visual features
extracted from each image instance for ICDM. Moreover, we propose a method
for adaptively weighting each kind of visual feature based on its appropriateness
for each concept pair. This work makes following two novel contributions.

(1) A variety of perspectives are considered due to the use of multiple kinds of
visual features.

(2) The most appropriate perspective for measuring the ICD is automatically
selected for each concept pair due to the adaptively weighted combination
of the multiple visual features.

The remainder of this paper is organized as follows: Section 2 briefly reviews
existing ICDM methods, especially focusing on image instance-based ones. Sec-
tion 3 describes the principle of image instance-based ICDM with the simplest
case, where only a single kind of visual feature is used. Section 4 describes the
proposed method in detail, which uses an adaptively weighted combination of
multiple visual features. Section 5 shows some experimental results, and finally
Section 6 concludes this paper.

2 Related Works

As mentioned in Section 1, existing ICDM methods can be roughly divided into
three types: ontology-based, text-based, and image instance-based. In every type,
each concept is described by a corresponding text word, but their measuring
procedures differ completely. We briefly review each type of methods in this
section. In the remainder of this paper, we refer to the ICD between two concepts
u and v as ICD(u, v).
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2.1 Ontology-based ICDM

The ontology-based ICDM [2, 3] uses a human-defined ontology in which seman-
tic hierarchical relationships between various text words are represented as a
tree structure and regards the length of the path between two text words u
and v in the tree as ICD(u, v). One of the most common ontologies used for
this purpose is WordNet1. ICDs computed by WordNet-based methods are close
to human perception since the WordNet is structured by human experts. How-
ever, the ontology-based methods can handle only a limited number of concepts,
i.e., those that are included in the ontology. To overcome this drawback, the
text-based and the image-instance based ICDM use web-scale data sources.

2.2 Text-based ICDM

The text-based ICDM [4–6] counts the co-occurrence frequency of two text words
u and v in a web-scale corpus and regards the inverse of the co-occurrence fre-
quency as ICD(u, v). Since each concept is described by a text word, we can say
the text-based methods are more direct than the image instance-based methods.
However, text-based methods cannot handle some inter-concept relationships
that are trivial for people to handle [8]; two concepts that have a trivial relation-
ship do not always co-occur as text words in a corpus because such relationships
have no need to be verbalized. To overcome this drawback, image instance-based
ICDM have been studied more actively in recent years as they are expected to be
able to handle various kinds of inter-concept relationships implicitly contained
in images.

2.3 Image Instance-based ICDM

The image instance-based ICDM is generally achieved by the following two steps:

i. For each concept c, construct its visual model M(c) by using a set of images
annotated with c.

ii. For each concept pair (u, v), compute the dissimilarity score between M(u)
and M(v) and regard it as ICD(u, v).

Step i. is the process called “Visual Concept Learning (VCL).”
There have been a number of previous studies on VCL [9, 12–16]. Most of

them define a VCL task as a problem of learning a classifier for classifying the
presence or absence of each concept c in images. In general, the learning process
for each concept c is performed independently of other concepts in a supervised
or semi-supervised manner using a number of positive images (those tagged with
c) and negative images (those not tagged with c). Discriminative models such as
Support Vector Machines (SVM) are often applied for this purpose. Sjöberg et
al. use a linear SVM which is computationally light and fast, aiming at real-time
applications [15]. Yang et al. use a non-linear SVM with per-sample Multiple

1 WordNet 3.0, http://wordnet.princeton.edu/
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Kernel Learning (MKL), which is an expansion of traditional MKL, for achieving
better performance in VCL [13]. Zhu et al. also use SVMs and learn a classifier
for each concept in the space spanned by concatenating different kinds of visual
features [12]. This allows the classifier to implicitly give an adaptive weight to
each kind of visual features. Like Zhu’s method, combining multiple kinds of
visual features with adaptively determined weights is widely used for VCL.

However, the above framework for VCL is not suitable for ICDM. IDCM is
a task of computing the distance between two concepts. Therefore, the appro-
priateness of each kind of visual features is determined not for each concept c
but for each concept pair (u, v). In other words, the appropriateness of a certain
feature for the concept u would vary depending on the counterpart concept v.
For instance, the distance between leaf and tree seems to be low because leaf is
obviously a meronym of tree, and it would be appropriately measured with color
feature because the color of leaves and trees are both green in most cases. On the
other hand, the distance between leaf and flower also seems to be low because
both are organs of plants, but it cannot be appropriately measured with color
feature because flowers have a wide variety of colors in contrast to leaves. Rather
than the color feature, local texture feature would be more appropriate for the
concept pair (leaf, flower). Nevertheless, a visual model of leaf constructed by
the above VCL framework always gives the same weights to each kind of vi-
sual features, regardless of relations with any other concepts including tree and
flower.

There are a few VCL methods taking into account inter-dependence between
concepts [9, 14], but these methods generally do not consider the use of adaptively
weighted combination of multiple visual features. For instance, Qi et al. have
proposed a technique of cross-category transfer learning for VCL, which learns
a classifier

fu(x; v) =
1

|X v|
∑

xv
i ∈Xv

zvi x
TSxv

i (1)

for a target concept u using an image instance set X v = {xv
i |i = 1, 2, · · · } of a

source concept v ̸= u, where xv
i is a visual feature extracted from the i-th image

instance of the concept v, zvi ∈ {1,−1} is the ground truth label of xv
i , and S is a

parametric matrix optimized in the learning process [14]. S can be interpreted as
the correlation matrix between the target concept u and the source concept v, so
it would be related to ICD(u, v) implicitly. However, since the relation between
S and ICD(u, v) is non-trivial, it is not straightforward to compute ICD(u, v)
based on S. Moreover, their method only uses a single kind of visual feature,
i.e., bag of SIFT descriptors. Fan et al. directly compute inter-concept similarity
γ(u, v) for each concept pair (u, v) and add it to the classifier learning process
of SVM for increasing the discrimination power of the classifier [9]. Their inter-
concept similarity score γ(u, v) can be easily applied to ICDM by computing
ICD(u, v) as 1/γ(u, v). However, their algorithm for computing γ(u, v), in which
multiple kinds of visual features are extracted for each image, equally uses all
kinds of visual features with the same weight.
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One more drawback of the above VCL framework for ICDM is to use dis-
criminative models which often provide complex discriminant hypersurfaces (e.g.
non-linear SVM). Actually, it is not a straightforward problem to compute the
dissimilarity score between two complex hypersurfaces. Therefore, generative
models are more suitable for ICDM. There are a few VCL methods using not
discriminative models but generative models. One of them is the method pro-
posed by Zhuang et al. [16], in which semi-supervised Latent Dirichlet Allocation
is used instead of SVM. Their method constructs visual models of all concepts
as a full probability distribution p(x, c) over concept c and visual feature vec-
tor x. This construction way for visual models is also adopted in many existing
image-instance based ICDM methods [7, 8]. More precisely, the existing ICDM
methods construct a visual model of each concept c as p(x|c) = p(x, c)/p(c) with
the assumption that prior p(c) is constant. Wu et al. model the p(x|c) as

p(x|c) =
∑
h

p(x|h)p(h|c) (2)

with probabilistic Latent Sematic Analysis (pLSA), where h is a hidden state
[8]. Kawakubo et al. also use pLSA, but they model each concept c with not
p(x|c) but p(h|c) [7]. In the method of Kawakubo et al., a set of hidden states
is shared by all concepts. In these methods, the dissimilarity score between two
visual models p(x|u) and p(x|v) is easily computed by information divergence
measure. However, in the existing ICDM methods [7, 8], only a single kind of
visual feature is used as the vector x.

In contrast to the existing methods, we introduce an adaptively weighted
combination of multiple visual features into image instance-based ICDM, which
is widely considered in many VCL methods as mentioned above.

3 Image Instance-based ICDM
with a Single Kind of Visual Feature

To comprehensively describe the principle of image instance-based ICDM, we
start with the simplest case, where only a single kind of visual feature is used.

3.1 Notation

Let C denote the finite set of concepts on which we focus. For each concept
c ∈ C, let Ici (i = 1, · · · , nc) denote the i-th image instance of concept c, where
nc is the total number of image instances of concept c. Each image is converted
into the same kind of d-dimensional feature vector x ∈ Rd by some feature
extractor. Let xc

i denote the actual value of feature vector x extracted from
image Ici . In addition, let X c denote the set of feature vectors for concept c; that
is, X c = {xc

i |i = 1, · · · , nc}.
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3.2 Visual Concept Learning with a Generative Model

As mentioned in Section 2.3, most existing ICDM methods use the following
two-step algorithm:

i. For each concept c ∈ C, construct its visual model as conditional distribution
p(x|c) by using X c.

ii. For each concept pair (u, v) ∈ C2, compute the dissimilarity score between
p(x|u) and p(x|v) by information divergence measure.

In step i., the probability p(x|c) is generally assumed to be well modeled by a
parametric distribution such as a mixture of Gaussians or a categorical distri-
bution. We therefore use p(x|Θc) instead of p(x|c), where Θc is the parameter
vector of the parametric distribution.

According to probability theory, modeling each concept c as p(x|Θc) boils
down to estimating parameter Θc from the feature vector set X c. On the basis
of MAP estimation, Θc can be estimated as

Θc = argmaxΘ [p (Θ |X c )] (3)

by using parameter variable Θ.
According to Bayes’ rule, p (Θ |X c ) can be decomposed as

p (Θ |X c ) =
1

λ
p(Θ)p (X c|Θ) , (4)

where λ is the normalization constant for satisfying condition
∫
p (Θ |X c ) dΘ =

1. For convenience of computation, we assume that all image instances are in-
dependently observed. This assumption means that each feature vector xc

i is
independent of any other feature vector, so

p (X c|Θ) =

nc∏
i=1

p(xc
i |Θ) . (5)

On the basis of Formulas (3), (4), and (5), Θc can be estimated as

Θc = argmaxΘ

[
p(Θ)

nc∏
i=1

p(xc
i |Θ)

]
. (6)

Note that λ can be ignored in the above maximization since it is constant with
respect to Θ. This formula can be rewritten as

Θc = argmaxΘ

[
log p(Θ) +

nc∑
i=1

log p(xc
i |Θ)

]
(7)

because of the monotonicity of the log function.
In order to estimate parameter Θc for each concept c based on Formula (7),

we model p(Θ) and p(x|Θ) with some parametric distributions.
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First, we model p(x|Θ) with a K-dimensional categorical distribution, quan-
tizing feature vector x into K representative values {yk|k = 1, · · · ,K} by using
a vector quantization method. Actually, we can employ more sophisticated ap-
proaches for modeling p(x|Θ) like Kawakubo et al. [7] and Wu et al. [8], but it
is not our focus, so that we employ a categorical distribution in this study. In
a K-dimensional categorical distribution, model parameter Θ is defined as K-
dimensional real vector (θ1 · · · θK)T , each of whose element θk is corresponding
to the probability of x = yk, that is, p(x = yk|Θ) = θk. Trivially,

K∑
k=1

θk = 1 (8)

is satisfied. Distribution p(x|Θ) can be formulated as

p(x|Θ) =
K∏

k=1

(θk)
δ(x,yk) , (9)

where δ is Kronecker’s delta. Taking the log of both sides, the above Formula
(9) is rewritten as

log p(x|Θ) =
K∑

k=1

δ(x,yk) log θk . (10)

Next, we model p(Θ) with a K-order Dirichlet distribution, which is the
conjugate prior of the K-dimensional categorical distribution. With a parameter
α = (α1 · · · αK)T , distribution p(Θ) is formulated as

p(Θ) =
1

Z

K∏
k=1

(θk)
(αk−1) , (11)

where Z is the normalization constant for satisfying condition
∫
p(Θ)dΘ = 1.

Taking the log of both sides, the above Formula (11) is rewritten as

log p(Θ) = − logZ +
K∑

k=1

(αk − 1) log θk . (12)

On the basis of Formulas (7), (10), and (12), Θc is finally estimated as

Θc = argmaxΘ

[
K∑

k=1

log θk

{
αk − 1 +

nc∑
i=1

δ(xc
i ,yk)

}]
. (13)

Note that − logZ can be ignored in the above maximization since it is constant
with respect to θk. Maximization problem (13) subject to constraint (8) can be
solved by Lagrange multiplier method, whose solution Θc = (θc1 · · · θcK)T is
explicitly described as

θck =
1

ξ

{
αk − 1 +

nc∑
i=1

δ(xc
i ,yk)

}
(14)
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for each k ∈ {1, · · · ,K}, where ξ is the normalization constant for satisfying the
constraint (8).

3.3 Dissimilarity Score between Two Visual Models

The dissimilarity score between two distributions p(x|Θu) and p(x|Θv) is gen-
erally computed by information divergence measures. A commonly used one is
Kullback-Leibler (KL) divergence, which is defined as

DKL[ϕ||ψ] =
∫
p(x|ϕ) log p(x|ϕ)

p(x|ψ)
dx (15)

for two distributions p(x|ϕ) and p(x|ψ). However, KL divergence has an unde-
sirable property as a dissimilarity measure, i.e., asymmetry. Therefore, Jensen-
Shannon (JS) divergence [17], which is symmetric, has also been used as a dis-
similarity measure [7, 8]. The JS divergence between p(x|ϕ) and p(x|ψ) is defined
as

DJS[ϕ||ψ] =
1

2
(DKL[ϕ||η] +DKL[ψ||η]) , (16)

where

p(x|η) = 1

2
{p(x|ϕ) + p(x|ψ)} . (17)

We also use JS divergence and compute the dissimilarity score between two
concepts u and v as

Dissim(u, v) = DJS[Θ
u||Θv] . (18)

More specifically, for two model parameters Θu = (θu1 · · · θuK)T and Θv =
(θv1 · · · θvK)T , we compute the dissimilarity score Dissim(u, v) as

Dissim(u, v) =
K∑

k=1

{
θuk
2

log
2θuk

θuk+θ
v
k

+
θvk
2

log
2θvk

θuk+θ
v
k

}
. (19)

4 Image Instance-based ICDM
with Multiple Kinds of Visual Features

Here we consider the case in which multiple kinds of visual features are used in
conjunction with each other. We use the symbol S to represent a set of visual
feature extractors such as SIFT descriptor and color histogram descriptor. The
vector xc

i is rewritten as xc,s
i , which represents the feature vector extracted from

image instance Ici by extractor s ∈ S, and the feature vector set X c is redefined
as X c,s = {xc,s

i |i = 1, · · · , nc}. The scoring function Dissim(u, v) in Formula (19)
is redefined as Dissim(u, v; s), which represents the dissimilarity score between
concepts u and v computed using feature vector sets X u,s and X v,s.
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4.1 Distance as Weighted Sum of Dissimilarity Scores

There are two popular strategies to fuse multiple kinds of visual features: feature-
level fusion and decision-level fusion. In the context of ICDM, the feature-level
fusion is achieved by defining a new large vector

Xc
i =

(
w(s1) (x

c,s1
i )

T
w(s2) (x

c,s2
i )

T · · ·
)T

(20)

with a weight set W = {w(sj)|j = 1, 2, · · · } for all c ∈ C and i ∈ {1, · · · , nc},
where sj ∈ S for all j, and applying the method of Section 3 on a set of the
new vectors {Xc

i |i = 1, · · · , nc}. However, this strategy is not suitable for adap-
tive weight control, because the weight set W only can affect the scale of each
dimension of the new vector X; the general shape of the distribution p(X|c)
is not affected by W, which means the information divergence between p(X|u)
and p(X|v) for any pair (u, v) ∈ C2 does not change with W. Therefore, in
this paper, we employ the other strategy, the decision-level fusion, which is
achieved by computing Dissim(u, v; s) separately for each s ∈ S and fusing the
set {Dissim(u, v; s)|s ∈ S} into a single distance measure. For this purpose, we
use a weighted-sum method, a simple yet commonly used fusion method.

As shown in Figure 1, our fused distance measure gives ICD(u, v) as

ICD(u, v) =
∑
s∈S

w(s;u, v)Dissim(u, v; s) (21)

by using the weighted sum scheme, where w(s;u, v) denotes the weight for
Dissim(u, v; s). The weight set {w(s;u, v)|s ∈ S} always satisfies∑

s∈S

w(s;u, v) = 1, (22)

but it is determined differently for each concept pair (u, v). If the feature vector
set extracted using extractor s is more appropriate for modeling the relationship
between u and v, a larger value is assigned to w(s;u, v).

4.2 Weight Determination based on Dissimilarity Itself

Now the problem is how to determine weight w(s;u, v) for each concept pair
(u, v) ∈ C2 and each extractor s ∈ S. In other words, the problem is how to
evaluate the appropriateness of each extractor s for modeling the relationship
between concepts u and v.

In the context of VCL, “appropriateness” can be simply defined as “degree
of correlation.” This is because if the feature vectors extracted by extractor s are
deeply correlated with the presence or absence of concept c, the extractor s is
appropriate for the concept c, and vice versa. Hence the appropriateness of each
extractor s for each concept c is implicitly given in the process of supervised
learning for the concept c. However, in the context of ICDM, the “appropriate-
ness” is determined not for each concept but for each concept pair, as mentioned
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Fig. 1. Overview of method proposed for measuring ICDs

in Section 2.3. In this case, “appropriateness” differs from “degree of correlation,”
and therefore it can hardly be given by supervised learning. We therefore employ
a non-learning based approach in this study.

As mentioned in Section 1, there are a wide variety of perspectives for evalu-
ating the similarity between two concepts. This means that the similarity score
between two concepts would vary depending on the perspective. For instance,
the similarity between car and train would likely be high from the perspective
of function, but it would likely be low from the perspective of shape. On the
other hand, the similarity between cat and tiger would likely be high from the
perspective of shape, but it would likely be low from the perspectives of size and
color. For such concept pairs, how should the semantic distance between them
be determined? Generally speaking, humans would give a low distance to such
concept pairs. Car and train would likely be considered similar in spite of their
dissimilarity in shape, and cat and tiger would likely be similar in spite of their
dissimilarity in size and color. Analogizing from these instances, we hypothesize
that the extractor s having lower Dissim(u, v; s) is more important for model-
ing the relationship between u and v. In other words, Dissim(u, v; s) itself can
be used as the indicator for evaluating the appropriateness of extractor s for
concept pair (u, v).

In our method, we define appropriateness indicator a(s;u, v) of extractor s
for concept pair (u, v) as

a(s;u, v) =
1

ϵ+Dissim(u, v; s)
, (23)

where ϵ (> 0) is a regularization term for avoiding division by zero. The lower
the Dissim(u, v; s), the higher the a(s;u, v) due to their inverse relationship. If
a(s;u, v) is high, extractor s is considered to be appropriate for modeling the
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relationship between u and v. Using a(s;u, v), we determine weight w(s;u, v) as

w(s;u, v) =
w′(s;u, v)∑
s∈S w

′(s;u, v)
, (24)

where
w′(s;u, v) = (a(s;u, v))

β
. (25)

Parameter β (≥ 0) is used to adjust the balance between weights; the smaller
the β, the more uniform the weights. If β = 0, the same weight is given to
all descriptors. If β = +∞, w(ŝ;u, v) = 1 is given to descriptor ŝ such that
ŝ = argmaxs∈S{a(s;u, v)}, and zero weight is given to all other descriptors.

5 Evaluation

We evaluated the effectiveness of the proposed method experimentally in com-
parison with two other methods: (A) using only a single kind of visual feature
and (B) combining multiple kinds of visual features with the same fixed-weight
used for all descriptors. We refer to the comparative method (B) as “Simple
avg.” method in this section. The performance of each method was evaluated on
the basis of correlation coefficient with JCN [2], which we refer to as CCJ in this
section. JCN is a representative ontology-based ICDM method using WordNet
and can provide ICDs close to human perception; so JCN has been often used
as the basis for performance evaluation in previous works [6, 8].

5.1 Experimental Setting

We first gathered 2,000 commonly used English nouns from the Corpus of Con-
temporary American English2 as a candidate set of concepts. The nouns not
included in WordNet were excluded. Next, the 400 nouns that had been most
frequently used as annotation tags in Flickr3 were selected from the candidate
set and used to construct concept set C. Then, for each of the 400 concepts,
the corresponding image instances were collected from Flickr. The number of
collected images ranged from 249 to 1868 per concept, and the total number was
379,294. From each of the collected images, we extracted four kinds of visual
feature: HSV color histogram (HSV Histo), GIST [18], GLCM [19], and bag of
visual words (BoVW) using the local descriptors proposed by Wu et al. [8]. Note
that the comparative method using only BoVW simulates the result of Wu’s
method. Using these 4 kinds of visual features, we computed the ICDs for all
combination of the 400 concepts. The total number of the considered concept
pairs was (400× 399)/2 = 79800.

The proposed method has four parameters: K, α = (α1 · · · αK)T , β, and
ϵ. Empirically, K was set to 100, β was set to 8, and ϵ was set to 0.01 in this
experiment. As to α, we assign the same value ᾱ to all αk and set the ᾱ to 50.

2 Corpus of Contemporary American English, http://www.wordfrequency.info/
3 Flickr, http://www.flickr.com/
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Fig. 2. Experimental results with several settings of β

Fig. 3. Results of additional experiments with several settings of K and ᾱ. K is fixed
to 100 in the left figure and ᾱ is fixed to 50 in the right figure.

5.2 Results and Discussion

The CCJ of the proposed method and that of each comparative method are
plotted in Figure 2, in which the horizontal axis represents parameter β. Since
β is not related to comparative methods (A) and (B), their results are repre-
sented as lines parallel to the horizontal axis. The CCJs of comparative methods
(A) ranges from 0.17 to 0.21. These were outperformed by Simple avg. method,
whose CCJ is 0.226. This indicates that it is important for ICDM to consider
a variety of perspectives which can be provided by the use of multiple kinds of
visual features. Moreover, Simple avg. method was outperformed by the pro-
posed method, whose CCJ is 0.251 for β = 8. This demonstrates that using an
adaptively weighted combination of multiple visual features is further effective
than the simple combination with the same fixed-weight.

The CCJ of the method using only BoVW, which simulates the result of the
method of Wu et al. [8], is 0.198. This is much lower than the result reported
in [8]. This is because the method described in Section 3 does not adopt a
complex way for modeling p(x|Θ) unlike Wu’s study. Using more sophisticated
approaches for modeling p(x|Θ) for each kind of visual feature would improve
the effectiveness of the proposed method.
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Table 1. Average rank of 80 concept pairs that are judged as similar by humans

BoVW GIST GLCM HSV histo Simple avg. Proposed

11183.2 10946.6 12132.8 10730.0 9940.7 9438.9

We examined the effects of parameters K and ᾱ in additional experiments.
Figure 3 (left) shows the CCJ of each method with several settings of ᾱ and
fixed K. All of the shown CCJ is seriously decreased for small ᾱ, especially for
ᾱ ≤ 20. This indicates the possibility that the size of collected image set was
not enough. The method described in Section 3 tends to cause the overfitting of
Θc to image set X c if the size of X c is too small. Large ᾱ is helpful for avoiding
this overfitting problem. Hence, the CCJ of each method increases with larger ᾱ.
However, if the size of X c is enough large, the overfitting problem does not occur
so seriously. On the other hand, Figure 3 (right) shows the CCJ of each method
with several settings of K and fixed ᾱ. Roughly speaking, the larger the K, the
more improved the performance of each method. However, for K ≥ 120, we can
see little change in the CCJ of each method. This indicates that K should be
set to more than 1/8 of the size of a training set since the number of collected
image instances per concept in this experiment is 948 on an average. Note that
the proposed method outperformed the comparative methods (A) and (B) for
any settings of parameters K and ᾱ.

In the above experiments, all methods including the proposed one had not
high CCJ: at most 0.26. This is mainly because the image instance sets gathered
from Flickr included a non-negligible number of junk images, i.e., ones unrelated
to the annotation tags. Removing such junk images from the image instance sets
[20] as a pre-process would improve the effectiveness of the proposed method.

5.3 Comparison with Human Perception

Although JCN can provide ICDs close to human perception, there is not com-
plete agreement between them. Therefore we also experimentally compared the
result of each method with human perception.

In this experiment, we first picked up 783 concept pairs from all the 79800
concept pairs mentioned in Section 5.1. Next, we showed the 783 pairs to 4
people and instructed them to judge whether each pair is semantically similar
or not. As a result, 80 pairs out of the 783 pairs were judged as similar by all
the 4 people. On the other hand, we ranked the original 79800 concept pairs
in order of ICD computed by the proposed method, and created a ranked list.
For comparative methods (A) and (B), we created ranked lists in the same way.
Then we calculated the average rank of the above 80 concepts in each ranked
list. The average rank would be low if the corresponding method is effective.
Table 1 shows the result.

The result shown in Table 1 strongly supports the discussion in Section 5.2.
The average rank of Simple avg. method is lower than that of comparative
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methods (A), and that of the proposed method is lowest. This also demonstrates
that using an adaptively weighted combination of multiple visual features is
effective.

6 Conclusion

We proposed measuring image instance-based inter-concept dissimilarity by us-
ing multiple kinds of visual features and combining them into a single distance
measure using adaptively determined weights. Analogous to how people judge
ICDs, it determines the weight for each feature s in accordance with the dis-
similarity score calculated using s itself. The experimental results show that the
proposed method outperforms a method using only a single kind of feature and
one combining multiple kinds of features with a fixed weight. We will further im-
prove its performance by devising and using a method for removing junk images
from the image instance sets.
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