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Abstract—With the transition of facial expression recognition (FER) from laboratory-controlled to challenging in-the-wild conditions
and the recent success of deep learning techniques in various fields, deep neural networks have increasingly been leveraged to learn
discriminative representations for automatic FER. Recent deep FER systems generally focus on two important issues: overfitting
caused by a lack of sufficient training data and expression-unrelated variations, such as illumination, head pose and identity bias. In
this survey, we provide a comprehensive review of deep FER, including datasets and algorithms that provide insights into these
intrinsic problems. First, we introduce the available datasets that are widely used in the literature and provide accepted data selection
and evaluation principles for these datasets. We then describe the standard pipeline of a deep FER system with the related
background knowledge and suggestions for applicable implementations for each stage. For the state-of-the-art in deep FER, we
introduce existing novel deep neural networks and related training strategies that are designed for FER based on both static images
and dynamic image sequences and discuss their advantages and limitations. Competitive performances and experimental
comparisons on widely used benchmarks are also summarized. We then extend our survey to additional related issues and application
scenarios. Finally, we review the remaining challenges and corresponding opportunities in this field as well as future directions for the

design of robust deep FER systems.

Index Terms—Facial Expression Recognition, Facial Expression Datasets, Affect, Deep Learning, Survey.

1 INTRODUCTION

ACIAL expression is one of the most powerful, natural and
Funiversal signals for human beings to convey their emotional
states and intentions [1], [2]. Numerous studies have been con-
ducted on automatic facial expression analysis because of its
practical importance in sociable robots, medical treatment, driver
fatigue surveillance, and many other human-computer interaction
systems. In the field of computer vision and machine learning,
various facial expression recognition (FER) systems have been
explored to encode expression information from facial represen-
tations. As early as the twentieth century, Ekman and Friesen [3]
defined six basic emotions based on a cross-cultural study [4],
which indicated that humans perceive certain basic emotions in
the same way regardless of culture. These prototypical facial ex-
pressions are anger, disgust, fear, happiness, sadness, and surprise.
Contempt was subsequently added as one of the basic emotions
[5]. Recently, advanced research on neuroscience and psychology
argued that the model of six basic emotions is culture-specific and
not universal [0].

Although the affect model based on basic emotions is limited
in the ability to represent the complexity and subtlety of our
daily affective displays [7], [8], [9], and other emotion description
models, such as the facial action coding system (FACS) [10] and
the continuous model using affect dimensions [ 1], are considered
to represent a wider range of emotions. The categorical model
that describes emotions in terms of discrete basic emotions is
still the most popular perspective for FER due to its pioneering
investigations along with the direct and intuitive definition of facial
expressions. In this survey, we limit our discussion on FER based
on the categorical model.

FER systems can be divided into two main categories ac-
cording to the feature representations: static image FER and
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dynamic sequence FER. In static-based methods [12], [13], [14],
the feature representation is encoded with only spatial information
from the current single image, whereas dynamic-based methods
[15], [16], [17] consider the temporal relation among contiguous
frames in the input facial expression sequence. Based on these
two vision-based methods, other modalities, such as audio and
physiological channels, have also been used in multimodal systems
[18] to assist in the recognition of expression. Although pure
expression recognition based on visible face images can achieve
promising results, incorporating other models into a high-level
framework can provide complementary information and further
enhance robustness.

The majority of the traditional methods have used handcrafted
features or shallow learning (e.g., local binary patterns (LBP) [12],
LBP on three orthogonal planes (LBP-TOP) [15], non-negative
matrix factorization (NMF) [19] and sparse learning [20]) for FER.
However, since 2013, emotion recognition competitions such as
FER2013 [21] and Emotion Recognition in the Wild (EmotiW)
[22], [23] have collected relatively sufficient training data from
challenging real-world scenarios, which implicitly promote the
transition of FER from lab-controlled to in-the-wild settings.
Additionally, due to the dramatically increased chip processing
abilities (e.g., GPU units) and well-designed network architecture,
studies in various fields have begun to transfer to deep learning
methods, which have achieved state-of-the-art recognition accu-
racy and exceeded previous results by a large margin (e.g., [24],
[25], [26], [27]). Similarly, given the more effective training data
of facial expressions, deep learning techniques have increasingly
been implemented to handle the challenging factors for emotion
recognition in the wild. Figure 1 illustrates this evolution of FER
in terms of algorithms and datasets.

Exhaustive surveys on automatic expression analysis have
been published in recent years [7], [8], [28], [29]. These surveys
have established a set of standard algorithmic pipelines for FER.
However, they focus on traditional methods, and deep learning
has rarely been reviewed. Very recently, deep learning for human
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Fig. 1. The evolution of facial expression recognition in terms of datasets
and methods.

affect recognition was surveyed in [30], which reviewed the
development of deep affect recognition from 2010 to 2017 and
focused on the fusion of audiovisual and physiological sensors. In
this paper, we conduct more specific and detailed research on deep
learning for both static and dynamic FER tasks until 2019. We
aim to give a newcomer to this field an overview of the systematic
framework and prime skills for deep FER.

Despite the powerful feature learning ability of deep learning,
problems remain when applied to FER. First, deep neural networks
require a large quantity of training data to avoid overfitting.
However, the existing facial expression databases are not sufficient
to train the well-known neural network with deep architecture that
achieved the most promising results in object recognition tasks.
Additionally, high intersubject variations exist due to different
personal attributes, such as age, gender, ethnic backgrounds and
level of expressiveness [31]. In addition to subject identity bias,
variations in pose, illumination and occlusions are common in
unconstrained facial expression scenarios. These disturbances are
nonlinearly confounded with facial expressions and therefore
strengthen the requirement of deep networks to address the large
intraclass variability and to learn effective expression-specific
representations.

In this paper, we introduce recent advances in research on
solving the above problems for deep FER. We examine the state-
of-the-art results that have not been reviewed in previous survey
papers. The rest of this paper is organized as follows. Frequently
used expression databases are introduced in Section 2. Section 3
identifies three main steps required in a deep FER system and
describes the related background. Section 4 provides a detailed
review of novel neural network architectures and special network
training tricks designed for FER based on static images and
dynamic image sequences. We then cover additional related issues
and other practical scenarios in Section 5. Section 6 discusses
some of the challenges and opportunities in this field and identifies
potential future directions.

2 FACIAL EXPRESSION DATABASES

Having sufficient labeled training data that include as many
variations of the populations and environments as possible is
important for the design of a deep expression recognition system.
In this section, we discuss publicly available databases that contain
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basic expressions and that are widely used in our reviewed papers
for deep learning algorithm evaluation. We also introduce newly
released databases that contain a large number of affective images
collected from the real world to benefit the training of deep neural
networks. Table 1 provides an overview of these datasets, includ-
ing the main reference, number of subjects, number of images or
video samples, collection environment, expression distribution and
additional information. Figure 2 exhibits facial expression images
collected from laboratory and real-world conditions.
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Fig. 2. Sample images with seven basic emotions collected from differ-
ent environments (lab-controlled v.s. real world). Photograph (one per
row): CK+ [32], Oulu-CASIA [33]; RAF-DB [34], EmotiW 2017 [23].

CK+ [32]: The Extended Cohn-Kanade (CK+) database
is the most extensively used laboratory-controlled database for
evaluating FER systems. CK+ contains sequences that show a
shift from neutral expression to peak expression. For evaluation,
the most common data selection method is to extract the last
one to three frames with peak formation and the first frame of
each sequence. Then, the subjects are divided into n groups for
person-independent n-fold cross-validation experiments, where
commonly selected values of n are 5, 8 and 10.

MMI [35]: The MMI database is also laboratory controlled. In
contrast to CK+, sequences in MMI are onset-apex-offset labeled,
i.e., the sequence begins with a neutral expression and reaches a
peak near the middle before returning to the neutral expression.
For experiments, the most common method is to choose the first
frame (neutral face) and the three peak frames in each frontal
sequence to conduct person-independent 10-fold cross-validation.

Oulu-CASIA [33]: The Oulu-CASIA database includes 2,880
image sequences collected from 80 subjects. Each of the videos
is captured with one of two imaging systems, i.e., near-infrared
(NIR) or visible light (VIS), under three different illumination
conditions. Similar to CK+, the first frame is neutral, and the
last frame has the peak expression. Typically, only the last three
peak frames and the first frame (neutral face) from the 480 videos
collected by the VIS system under normal indoor illumination are
employed for 10-fold cross-validation experiments.

JAFFE [36]: The Japanese Female Facial Expression (JAFFE)
database contains 213 samples of posed expressions from 10
Japanese females. Each person has 374 images with each of six
basic facial expressions and one image with a neutral expression.
Typically, all the images are used for the leave-one-subject-out
experiment.

FER2013 [21]: FER2013 is a large-scale and unconstrained
database collected automatically by the Google image search APIL.
All images were registered and resized to 48*%48 pixels after
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TABLE 1

An overview of the facial expression datasets. P = posed; S = spontaneous; Condit. = Collection condition; Elicit. = Elicitation method.

Database Samples [ Subject [ Condit. [ Elicit. Expression distribution Access
593 image ; i
CK+[37] ecquences 123 Lab P&S seven basic expressions plus contempt http://www.consortium.ri.cmu.edu/ckagree/
MMI [35] 74;09‘(')’(‘]“\%312:" 25 Lab p seven basic expressions https:/mmifacedb.eu/
JAFFE [36] 213 images 10 Lab P seven basic expressions http://www.Kkasrl. ffe.html
TFD [37] 112,234 images N/A Lab P seven basic expressions josh@mplab.ucsd.edu
FER-2013 [21] 35,887 images NA Web P&s seven basic expressions hitps://www kaggle.com/c/challenges- in- represcntation-learning-facial-exp
ression- nition- chall
AFEW 7.0 [23] 1,809 videos N/A Movie P&S seven basic expressions https:/sites.google.com/site/emotiwchallenge/
SFEW 2.0 [22] 1,766 images N/A Movie P&S seven basic expressions https://cs.anu.edu.au/few/emotiw2015.html
Multi-PIE [35] 755,370 images 337 Lab P Smile, surprised, squint. disgust scream and http://www.flintbox.com/public/project/4742/
BU-3DFE [39] 2,500 3D images 100 Lab P seven basic expressions http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.htm|
BU-4DFE [40] 606 3D sequences 101 Lab P seven basic expressions http://www.cs.binghamton.edu/~ lijun/Research/3DFE/3DFE_Analysis.html
Oulu-CASIA [33] 25;225‘:‘65“ 80 Lab P six basic expressions without neutral hitps//www.cse.oulu.fi/CMV/Downloads/Oulu-CASIA
RaFD [41] 1,608 images 67 Lab P seven basic expressions plus contempt http://www.socsci.ru.nl:8180/RaFD2/RaFD
KDEF [42] 4,900 images 70 Lab P seven basic expressions http://www.emotionlab.se/kdef/
EmotioNet [43] 1,000,000 images N/A Internet P&S 23 basic expressions or e http://cbesl.ece.ohio-state.edu/dbform_emotionet.html
RAF-DB [34], [44] 29672 images N/A Internet P&S seven basic expressions and twelve compound http://www.whdeng.cn/RAF/model 1html
expressions
AffectNet [45] 450{?&2;::;"’05 N/A Internet P&S seven basic expressions http://mohammadmahoor.com/databases- codes/
ExpW [46] 91,793 images N/A Internet P&S seven basic expressions http://mmlab.ie.cuhk.edu.hk/projects/socialrelation/index.html
4DFAB [17] 1.8 million 3D faces 180 Lab P&S seven basic expression N/A
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rejecting incorrectly labeled frames and adjusting the cropped
region. FER2013 contains 28,709 training images, 3,589 valida-
tion images and 3,589 test images with seven expression labels.
AFEW [48] and SFEW [49]: The Acted Facial Expressions
in the Wild (AFEW) database contains video clips collected
from different movies with spontaneous expressions, various head
poses, occlusions and illuminations. AFEW is a temporal and
multimodal database that provides vastly different environmental
conditions in both audio and video. The AFEW is independently
divided into three data partitions in terms of subject and movie/TV
source, which ensures data in the three sets belong to mutually
exclusive movies and actors. The Static Facial Expressions in
the Wild (SFEW) was created by selecting static frames from
the AFEW database. The most commonly used version, SFEW
2.0, has been divided into three sets: Train, Val and Test. The
expression labels of the training and validation sets are publicly
available, whereas those of the testing set are held back by the
challenge organizer.

Multi-PIE [38]: The CMU Multi-PIE database contains
755,370 images from 337 subjects under 15 viewpoints and 19
illumination conditions in up to four recording sessions. Each
facial image is labeled with one of six expressions. This dataset is
typically used for multiview facial expression analysis.

BU-3DFE [39] and BU-4DFE [40]: The Binghamton Uni-
versity 3D Facial Expression (BU-3DFE) database contains 606
facial expression sequences captured from 100 people. For each
subject, six facial expressions are elicited in various manners with
multiple intensities. Similar to Multi-PIE, this dataset is typically
used for multiview 3D facial expression analysis. To analyze the
facial behavior from a static 3D space to a dynamic 3D space, BU-
4DFE was constructed, which contains 606 3D facial expression
sequences with a total of approximately 60,600 frame models.

EmotioNet [43]: EmotioNet is a large-scale database with one
million facial expression images collected from the Internet. A
total of 950,000 images were annotated by the automatic action
unit (AU) detection model in [43], and the remaining 25,000
images were manually annotated with 11 AUs. The second track of
the EmotioNet Challenge [50] provides six basic expressions and
ten compound expressions [51], and 2,478 images with expression

labels are available.

RAF-DB [34], [44]: The Real-world Affective Face Database
(RAF-DB) is a real-world database that contains 29,672 highly
diverse facial images downloaded from the Internet. With man-
ually crowd-sourced annotation and reliable estimation, seven
basic and eleven compound emotion labels are provided for the
samples. Specifically, 15,339 images from the basic emotion set
are divided into two groups (12,271 training samples and 3,068
testing samples) for evaluation.

AffectNet [45]: AffectNet contains more than one million
images from the Internet that were obtained by querying different
search engines using emotion-related tags. It is by far the largest
database that provides facial expressions in two different emotion
models (categorical model and dimensional model), of which
450,000 images have manually annotated labels for eight basic
expressions.

ExpW [46]: The Expression in-the-Wild Database (ExpW)
contains 91,793 faces downloaded using Google image search.
Each of the face images was manually annotated as one of the
seven basic expression categories. Nonface images were removed
in the annotation process.

4DFAB [47]: 4DFAB is a large-scale database with over
1,800,000 high-resolution 3D faces, which has records of 180
subjects captured in four different sessions spanning a five-year
period. It contains 4D dynamic videos of subjects displaying both
spontaneous and posed facial behaviors of six basic expressions.

3 DEEP FACIAL EXPRESSION RECOGNITION

In this section, we describe the three main steps that are common
in automatic deep FER, i.e., preprocessing, deep feature learning
and deep feature classification. We briefly summarize the widely
used algorithms for each step and recommend the existing state-of-
the-art best practice implementations according to the referenced
papers.

3.1

Variations that are irrelevant to facial expressions, such as different
backgrounds, illuminations and head poses, are fairly common in

Preprocessing
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unconstrained scenarios. Therefore, before training the deep neural
network to learn meaningful features, preprocessing is usually
required to align and normalize the visual semantic information
conveyed by the face.

3.1.1 Face alignment

We list some well-known approaches and publicly available face
alignment implementations that are widely used in deep FER.
Given a series of training data, the first step is to detect the
face and then to remove background and nonface areas. The
Viola-Jones (V&J) face detector [52] is a classic and widely
employed implementation for face detection, which is robust and
computationally simple for detecting near-frontal faces.

Although face detection is the only indispensable procedure to
enable feature learning, further face alignment using the coordi-
nates of localized landmarks can substantially enhance the FER
performance [14]. This step is crucial because it can reduce the
variation in facial size and in-plane rotation. Table 2 investigates
facial landmark detection algorithms widely used in deep FER and
compares them in terms of efficiency and performance. In general,
cascaded regression combined with deep networks has become the
most popular and state-of-the-art method for face alignment due
to its high speed and accuracy.

In contrast to using only one detector for face alignment,
some methods proposed combining multiple detectors for better
landmark estimation when processing faces in challenging uncon-
strained environments. Yu et al. [53] concatenated three different
facial landmark detectors to complement each other. Kim et al.
[54] considered different inputs (original image and histogram
equalized image) and different face detection models (V&J [52]
and MoT [55]) and chose the landmark result with the highest
confidence predicted by the Intraface [56] for face alignment.

3.1.2 Data augmentation

Deep neural networks require sufficient training data to ensure
generalizability to a given recognition task. However, most pub-
licly available databases for FER do not have a sufficient quantity
of images for training. Therefore, data augmentation is a vital
step for deep FER. Data augmentation approaches can be divided
into two types: on-the-fly data augmentation and offline data
augmentation.

Usually, on-the-fly data augmentation is embedded in deep
learning toolkits to alleviate overfitting. During the training step,
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Fig. 3. The general pipeline of deep facial expression recognition systems.

TABLE 2
Summary of different types of face alignment detectors that are widely
used in deep FER models.

type # pointsjreal-time| speed | performance used in
. - . poor con e
Holistic | AAM [57] | 68 X fair seneralization [58], [59]
MoT [55] | 39/68 X slow/ [60], [61], [62]
Part-based seME o7 66 X fast good 1677, 165]
SDM [66] | 49 v 177, T16], 1671, 1651
Cascaded SOﬁg)ifps 68 v fast/ good/ [59]
regression very fast| very good
Incremental 49 v [71]
[70]
Cascaded .
Deep | CNN[72] | ° v fast good/ 174
learning M”[Fﬁl;lN 5 v very good [751. [76]. [77]

the input samples are randomly cropped from the center and four
corners of the image and then flipped horizontally, which can
result in a dataset that is ten times larger than the original training
data. Two common prediction modes are adopted during testing:
only the center patch of the face is used for prediction (e.g., [65],
[78]), or the prediction value is averaged over all ten crops (e.g.,
(541, [79D.

In addition to elementary on-the-fly data augmentation, various
offline data augmentation operations have been designed to further
expand data on both size and diversity. The most frequently
used operations include random perturbations and transforms, e.g.,
rotation, shifting, skew, scaling, noise, contrast and color jittering.
Combinations of multiple operations [53], [80] can generate more
unseen training samples and make the network more robust
to deviated and rotated faces. Furthermore, deep learning-based
technology can be applied for data augmentation. For example, a
synthetic data generation system with a 3D convolutional neural
network (CNN) was created in [81] to confidentially create faces
with different levels of saturation in expression. The generative
adversarial network (GAN) [82] can also be applied to augment
data by generating diverse appearances varying in poses and
expressions (see Section 4.3.6).

3.1.3 Face normalization

Variations in illumination and head poses can introduce large
changes in images and hence impair the FER performance.
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Therefore, we introduce two typical face normalization methods
to ameliorate these variations: illumination normalization and
pose normalization.

Illumination normalization: Illumination and contrast can
vary in different images even from the same person with the same
expression, especially in unconstrained environments, which
can result in large intraclass variances. Various algorithms, such
as isotropic diffusion (IS)-based normalization, discrete cosine
transform (DCT)-based normalization, difference of Gaussian
(DoG) and homomorphic filtering-based normalization, can be
used for illumination normalization [64], [83]. Moreover, related
studies have shown that histogram equalization combined with
illumination normalization results in better face recognition
performance than that achieved using illumination normalization
alone. Many studies in the literature of deep FER (e.g., [53], [84],
[85], [86]) have employed histogram equalization to increase
the global contrast of images for preprocessing. This method is
effective when the brightness of the background and foreground
are similar. However, directly applying histogram equalization
may overemphasize local contrast. To solve this problem, [87]
proposed a weighted summation approach to combine histogram
equalization and linear mapping.

Pose normalization: Pose variation is another common and
intractable problem in unconstrained settings. Some studies have
employed pose normalization techniques to yield frontal facial
views for FER (e.g., [88], [89]), among which the most popular
was proposed by Hassner et al. [90]. Specifically, after localizing
facial landmarks, a 3D texture model generic to all faces is
generated to estimate visible facial components. Then, the initial
frontalized face is synthesized by backprojecting each input face
image to the reference coordinate system. Alternatively, Sagonas
et al. [91] proposed a statistical model that simultaneously
localizes landmarks and converts facial poses using only frontal
faces. Very recently, a series of GAN-based deep models were
proposed for frontal view synthesis and reported promising
performances.

3.2 Deep networks for feature learning

Deep learning has recently become a popular research topic
and has achieved state-of-the-art performances for a variety of
applications [92]. Deep learning attempts to capture high-level
abstractions through hierarchical architectures of multiple non-
linear transformations and representations. In this section, we
briefly introduce some deep learning techniques that have been
applied for FER. The traditional architectures of these deep neural
networks are shown in Fig. 3. Due to space limitations, we
introduce the principles and applications of these networks, in-
cluding convolutional neural networks, deep belief networks, deep
autoencoders, recurrent neural networks and generative adversarial
networks, in the supplementary material (See Section 1) in detail.

3.3 Facial expression classification

After learning the deep features, the final step of FER is to classify
the given image into one of the basic emotion categories.

Unlike traditional methods, where the feature extraction step
and the feature classification step are independent, deep networks
can perform FER in an end-to-end way. Specifically, a loss layer
is added to the end of the network to regulate the backpropagation
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error; then, the prediction probability of each sample can be
directly output by the network. In CNN, softmax loss is the
most commonly used function that minimizes the cross-entropy
between the estimated class probabilities and the ground-truth
distribution. Alternatively, [93] demonstrated the benefit of using
a linear support vector machine (SVM) for end-to-end training,
which minimizes margin-based loss instead of cross-entropy.
Likewise, [94] investigated the adaptation of deep neural forests
(NFs) [95], which replaces the softmax loss with NFs and achieved
competitive results for FER.

In addition to the end-to-end learning method, another al-
ternative is to employ the deep neural network (particularly a
CNN) as a feature extraction tool and then apply additional
independent classifiers, such as support vector machine or random
forest, to the extracted representations [90], [97]. Furthermore,
[98], [99] showed that the covariance descriptors computed on
DCNN features and classification with Gaussian kernels on the
symmetric positive definition (SPD) manifold are more efficient
than the standard classification with the softmax layer.

4 THE STATE-OF-THE-ART

In this section, we first introduce the specific pretraining and fine-
tuning skills and diverse network inputs that are designed for FER.
Then, we divide the works presented in the literature into two
main groups depending on the type of data: deep FER networks
for static images and deep FER networks for dynamic image
sequences and discuss different network types that have been
proposed in these groups. Moreover, we provide an overview of
the current deep FER systems with respect to network architecture
and performance.

4.1 Pretraining and fine-tuning

As mentioned before, direct training of deep networks on rela-
tively small facial expression datasets is prone to overfitting. To
mitigate this problem, many studies used additional task-oriented
data to pretrain their self-built networks from scratch or fine-tuned
on well-known pretrained models (e.g., AlexNet [24], VGG [25],
VGG-face [114] and GoogleNet [26]). Kahou et al. [60], [115]
indicated that the use of additional data can help to obtain models
with high capacity without overfitting, thereby enhancing the FER
performance.

To select appropriate auxiliary data, large-scale face recogni-
tion (FR) datasets or relatively large FER datasets are suitable.
Kaya et al. [116] suggested that VGG-Face, which was trained for
FR, overwhelmed ImageNet, which was developed for objected
recognition. Another interesting result observed by Knyazev et al.
[117] is that pretraining on a larger FR dataset can positively affect
the expression recognition performance, and further fine-tuning
with additional FER datasets can help improve the performance.

Instead of directly using the pretrained or fine-tuned models
to extract features on the target dataset, a multistage fine-tuning
strategy [67] can achieve better performance; after the first-stage
fine-tuning using FER2013 on pretrained models, a second-stage
fine-tuning using the training set of the target database (EmotiW)
is employed to refine the models to adapt to a more specific dataset
(i.e., the target dataset).

Although pretraining and fine-tuning on external FR data can
indirectly avoid the problem of small training data, the networks
are trained separately from the FER, and the face-dominated in-
formation remains in the learned features, which may weaken the
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6
Performance summary of representative methods for static-based deep facial expression recognition on the most widely evaluated datasets.
Network size = depth & number of parameters; Preprocessing = face detection & data augmentation & face normalization; IN = illumination
normalization; N'E = network ensemble; CN = cascaded network; MN = multitask network; LOSO = leave-one-subject-out.
Datasets Method Network NCI_W ork Preprocessing Data selection Data group Addufonm] Performance'(%)
type size classifier
. ¢ 19
Ouellet 14 [100] CNN (AlexNet) V&I the last frame LOSO SVM 7 classes t (94.4)
Lietal 15 [33] RBM 4 B V&I TN X 6 classes: 96.8
Livetal 14[13] DBN C 6 2m v - - 8 folds ‘AdaBoost 6 classes: 96.7
Liuetal. 13[101] CNN, RBM CN 5 V&I - - 10 folds SVM 8 classes: 92.05 (87.67)
- — the last three frames T
Liu et al. 15 [102] CNN, RBM cN 5 - V&l - and the first frame 10 folds SVM 7 classest 93.70
Khorrami et al. 15 [103] zero-bias CNN 4 Tm v v - 10 folds X 6 classes: 95.7; 8 classes: 95.1
CK+ Ding et al. 17 [68] CNN [ fine-tune 8 11m IntraFace v - 10 folds X 6 classes: (98.6): 8 classes: (96.8)
e 1a ame: T
Zeng et al. 18 [58] DAE (DSAE) 3 AAM the last four frames LOSO x 7 classes £ 95.79 (93.78)
and the first frame 8 classes: 89.84 (86.82)
Cai et al. 17 [104] CNN loss layer 6 DRMF v | IN 10 folds X 7 classes t 94.39 (90.66)
Meng et al. 17 [65] CNN MN 6 DRMF v 8 folds X 7 classes ¥ 95.37 (95.51)
Liu etal. 17 [78] CNN loss layer 11 IntraFace v | IN the last three frames 8 folds X 7 classes F 97.1 (96.1)
Yang et al. 18 [105] GAN (cGAN) MoT V|- 10 folds X 7 classes t 97.30 (96.57)
Zhang et al. 18 [10] CNN I M 4 V|- 10 folds X 6 classes: 98.9
i - T
JAFFE Liuetal. 14 [13] DBN CN 6 2m v 213 images LOSO AdaBoost 7 classes® 91.8
Hamester et al. 15 [106] CNN, (‘,AE2 NE 3 IN X 7 classes* (95.8)
Liuetal. 13 [101] CNN, RBM CN 5 V&I - - the middle three frames 10 folds SVM 7 c]asses'ﬁ 74.76 (71.73)
and the first frame
Liuetal. 15[102] CNN, RBM CN 5 - V&I - - 10 folds SVM 57585
Mollahosseini et al. 16 [14] CNN (Inception) 11 7.3m IntraFace v - images from each sequence 5 folds X 77.9
MMI Liuetal 17 [78] CNN [ Toss layer 11 - IntraFace v | IN 10 folds k3 6 classes: 78.53 (73.50)
Lietal. 17 [31] CNN [ loss layer 8 5.8m IntraFace v - the middle three frames 5 folds SVM 6 classes: 78.46
Yang et al. 18 [105] GAN (cGAN) - MoT v - ) 10 folds X
Liuetal. 19 [107] CNN I loss layer IntraFace v | IN 10 folds X
Reed et al. 14 [105] RBM MN 4,178 emotion labeled SVM Test: 85.43
3,874 identity labeled
TFD Devries et al. 14 [61] CNN MN 4 12.0m MoT v|IN 5 official X Validation: 87.80
4,178 labeled images folds Test: 85.13 (48.29)
Khorrami et al. 15 [103] zero-bias CNN 4 Tm v V| - ’ X Test: 88.6
Ding et al. 17 [68] CNN I fine-tune 8 11m IntraFace V|- X Test: 88.9 (87.7)
Tang 13 [93] CNN loss layer 4 12.0m v | IN X Test: 71.2
Devries et al. 14 [61] CNN MN 4 12.0m MoT v | IN X Validation+Test: 67.21
Zhang et al. 15 [109] CNN MN 6 21.3m SDM - - - ) X Test: 75.10
;i‘; Guo etal. 16 [110] CNN Toss layer 10 2.6m SDM 7 3‘;‘[‘;‘5 S‘;‘lzié?g kNN Test: 71.33
Kim ctal. 16 [111] CNN NE 5 24m TntraFace | 7 | IN alidation Set: 5. x Test: 73.73
T8/1253 Test Set: 3,589
Pramerdorfer et al. 16 [112] CNN NE 10/16/33 | (m') : v | IN X Test:75.2
Georgescu et al. 19 [113] CNN NE 8/13/16 - v SVM Test:75.42
. VGG-S/VGG-M/ 891 training, 431 validation, Validation: 51.75
levietal. 15 [79] CNN NE GoogleNet MoT v/ and 372 test x Test: 54.56
e E ~ 921 training, ? validation, Validation: 48.5 (39.63)
Ngetal. 15 [67] CNN fine-tune AlexNet IntraFace v and 372 test Test: 55.6 (42.69)
Lietal 17 [34] CNN loss layer 8 5.8m IntraFace v 921 training, 427 validation SVM Validation: 51.05
Ding et al. 17 [68] CNN fine-tune 8 I1m IntraFace v - 891 training, 425 validation X Validation: 55.15 (46.6)
. Liu etal. 17 [75] CNN loss layer 11 IntraFace v | IN X Validation: 54.19 (47.97)
SFEW —
2.0 Caietal. 17[104] CNN loss layer 6 DRMF /| IN X Validation: 3252 (341)
g : ’ Y Test: 59.41 (48.29)
— 958training, Validation: 50.98 (42.57)
Meng etal. 17 [65] CNN MN 6 DRMF sl 436 validation, 4 Test: 54.30 (44.77)
. . and 372 test Validation: 53.9
Kim et al. 15 [54] CNN NE 5 multiple v | IN X Test: 61.6
" — Validation: 55.96 (47.31)
Yuetal. 15[53] CNN NE 8 6.2m multiple v | IN X Test: 61.29 (51.27)

! The value in parentheses is the mean accuracy, which is calculated with the confusion matrix given by the authors.
7 Classes: anger, contempt, disgust, fear, happiness, sadness, and surprise.
i 7 Classes: anger, disgust, fear, happiness, neutral, sadness, and surprise.

expression-discriminative ability of the learned features. To elim-
inate this effect, a two-stage training algorithm FaceNet2ExpNet
[68] was proposed. The fine-tuned face net serves as a suitable
initialization for the expression net and is used to supervise the
training of the convolutional layers only. The fully connected
layers are trained from scratch with expression information to
regularize the training of the target FER net.

4.2 Diverse network input

Traditional practices commonly use the whole aligned face of
RGB images as the input of the network to learn features for
FER. However, these raw data lack important information, such
as homogeneous or regular textures and invariance in terms of
image scaling, rotation, occlusion and illumination, which may
represent confounding factors for FER. Some methods have em-
ployed diverse handcrafted features and their extensions as the
network input to strengthen the network’s robustness to common
distractions and to force the network to focus more on facial areas
with expressive information.

Low-level representations encode features from small regions
in the given RGB image and then cluster and pool these features
with local histograms, which are robust to illumination variations
and small registration errors. A novel mapped LBP feature [79]
was proposed for illumination-invariant FER. Scale-invariant fea-
ture transform (SIFT) [118]) features that are robust against image
scaling and rotation are employed [ 19] for multiview FER tasks.
Combining different descriptors in outline, texture, angle, and
color as the input data can also help enhance the deep network
performance [58], [120].

In addition, part-based representations extract features accord-
ing to the target task, which remove noncritical parts from the
whole image and exploit key parts that are sensitive to the task.
[121] indicated that three regions of interest (ROIs), i.e., eyebrows,
eyes and mouth, are strongly related to facial expression changes.
Other studies [122], [123], [124], [125], [126], [127] proposed
automatically learning the key parts (salient features) for facial
expressions using attention mechanisms.
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4.3 Deep FER networks for static images

A large volume of the existing studies conducted expression
recognition tasks based on static images without considering
temporal information due to the convenience of data processing
and the availability of related training and test data. For each of
the most frequently evaluated datasets, Table 3 shows the current
state-of-the-art methods in the field that are explicitly conducted
in a person-independent protocol.

4.3.1 Auxiliary block

Based on the foundation architecture of the CNN, several studies
have proposed the addition of well-designed auxiliary blocks or
layers to enhance the expression-related representation capability
of learned features.

A novel CNN architecture, HoloNet [88], was designed for
FER, where CReLU [128] was combined with the residual struc-
ture to increase the network depth without efficiency reduction
and an inception-residual block was uniquely designed for FER
to learn multiscale and expression-discriminative features. An-
other CNN model, supervised scoring ensemble (SSE) [89], was
introduced to enhance the supervision degree for FER, where
three kinds of supervised blocks were embedded in the early
hidden layers of the mainstream CNN for shallow, intermediate
and deep supervision (see Fig. 4). Interestingly, Zeng et al.
[129] noted that inconsistent annotations among different FER
databases are inevitable, which would damage the performance
when the training set is enlarged by merging multiple datasets. To
address this problem, the authors proposed an Inconsistent Pseudo
Annotations to Latent Truth (IPA2LT) framework. In IPA2LT, an
end-to-end trainable LTNet is designed to discover the latent truths
from the human annotations and the machine annotations trained
from different datasets by maximizing the log-likelihood of these
inconsistent annotations.

Supervised Scoring Ensemble (SSE)

Supervised Blocks
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Fig. 4. Three different supervised blocks in [89]. SS_Block for shallow-
layer supervision, IS_Block for intermediate-layer supervision, and
DS_Block for deep-layer supervision. These blocks were designed ac-
cording to the layerwise feature description ability of the original network.

4.3.2 Loss layer

The traditional softmax loss layer in CNNs simply forces features
of different classes to remain apart, but FER in realistic conditions
suffers from not only high interclass similarity but also high
intraclass variation. Therefore, several works have proposed novel
loss layers to mitigate this problem.

Inspired by the center loss [130], which penalizes the distance
between deep features and their corresponding class centers, two
variations were proposed to assist the supervision of the softmax
loss for more discriminative features. In [104], island loss was
formalized to increase the pairwise distances between different
class centers (see Fig. 5(a)). Specifically, the island loss calculated
at the feature extraction layer and the softmax loss calculated at
the decision layer are combined to supervise the CNN training. In

-
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(a) Island loss layer in [104].
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(b) (N+M)-tuple clusters loss layer in [78].

Fig. 5. Representative loss layers that are specifically designed for deep
facial expression recognition.

[34], locality-preserving loss (LP loss) was formalized to pull the
locally neighboring features of the same class together so that the
intraclass local clusters can be closer for each expression. Jointly
training this loss with the softmax loss, the discriminative power
of the learned features can be highly enhanced.

Based on the triplet loss [131], which requires one positive
example to be closer to the anchor than one negative example
with a fixed gap, two variations were proposed to replace or
assist the supervision of the softmax loss. In [110], exponential
triplet-based loss was formalized to give difficult samples more
weight when updating the network. In [78], (N+M)-tuples cluster
loss was formalized to alleviate the difficulty of anchor selection
and threshold validation in the triplet loss for identity-invariant
FER (see Fig. 5(b)). During training, identity-aware hard-negative
mining and online positive mining schemes were used to decrease
the inter-identity variation in the same expression.

4.3.3 Network ensemble

Previous research has suggested that assemblies of multiple net-
works can outperform an individual network [132]. Two key fac-
tors should be considered when implementing network ensembles:
(1) sufficient diversity of the networks to ensure complementarity,
and (2) an appropriate ensemble method that can effectively
aggregate the committee networks.

In terms of the first factor, different kinds of training data
and various network parameters or architectures are considered
to generate diverse committees. Several preprocessing methods
[111], such as deformation and normalization, and the methods
described in Section 4.2 can generate different data to train
diverse networks. By changing the size of filters, the number of
neurons and the number of layers in the networks, and applying
multiple random seeds for weight initialization, the diversity of the
networks can also be enhanced [54], [133]. In addition, different
architectures of networks can be used to enhance diversity. For
example, a supervised CNN and an unsupervised convolutional
autoencoder were combined for the network ensemble in [106].

For the second factor, each member of the committee networks
can be assembled at two different levels: the feature level and the
decision level. For feature-level ensembles, the most commonly
adopted strategy is to concatenate features learned from different
networks [85], [113], [134]. For example, [85] concatenated fea-
tures learned from different networks to obtain a single feature
vector to describe the input image (see Fig. 6(a)). In addition,
a feature loss [135] was proposed to embed the information
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Fig. 6. Representative network ensemble systems at the feature level
and decision level. (a) Three different features (fc5 of VGG13 + fc7
of VGG16 + pool of Resnet) after normalization are concatenated to
obtain a single feature vector (FV) that describes the input frame. (b)
A 3-level hierarchical committee architecture with hybrid decision-level
fusions was proposed to obtain sufficient decision diversity.

of handcrafted features into the training process and provide
complementary information for the deeply learned features. For
decision-level ensembles, three widely used rules are applied:
majority voting, simple average and weighted average. Because
the weighted average rule considers the importance and confidence
of each individual, many weighted average methods have been
proposed to find an optimal set of weights for network ensembles
(e.g., random search [60], log-likelihood loss and hinge loss [53],
exponentially weighted average in Fig. 6(b) [54] and trainable
CNN [133]).

4.3.4 Multitask networks

Many existing networks for FER focus on a single task and
learn features that are sensitive to expressions without considering
interactions among other latent factors. However, in the real
world, FER is intertwined with various factors, such as head
pose, illumination, and subject identity (facial morphology). To
solve this problem, multitask learning is introduced to transfer
knowledge from other relevant tasks and to disentangle nuisance
factors.
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Fig. 7. Representative multitask network for FER. In the proposed
MSCNN [73], a pair of images is sent into the MSCNN during training.
The expression recognition task with cross-entropy loss, which learns
features with large between-expression variation, and the face verifi-
cation task with contrastive loss, which reduces the variation in within-
expression features, are combined to train the MSCNN.

Reed et al. [108] constructed a higher-order Boltzmann ma-
chine (disBM) to learn manifold coordinates for the relevant
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factors of expressions and proposed training disentangling strate-
gies so that the expression-related hidden units are invariant
to face morphology. Other works [61], [136] suggested that
simultaneously conducting FER with other tasks, such as facial
landmark localization and facial AU [137] detection, can jointly
improve FER performance. In addition, several works [65], [73]
employed multitask learning for identity-invariant FER. In [065],
an identity-aware CNN (IACNN) with two identical subCNNs
was proposed. One stream used expression-sensitive loss for
expression-discriminative features, and the other stream used
the identity-sensitive loss to learn identity-related features for
identity-invariant FER. In [73], a multisignal CNN (MSCNN),
which was trained under the supervision of both FER and face
verification tasks, was proposed to force the model to focus on
expression information (see Fig. 7). Furthermore, an all-in-one
CNN model [138] was proposed to simultaneously solve a diverse
set of face analysis tasks, including smile detection. Similarly,
SmileNet [139] was proposed to learn both face detection and
smile recognition, which does not require a prenormalization step
including face detection and registration.

The conventional supervised multitask learning mentioned
above requires training samples labeled for all tasks. To address
this, [46] proposed a novel attribute propagation method that can
leverage the inherent correspondences between facial expressions
and other heterogeneous attributes despite the disparate distribu-
tions of different datasets.

4.3.5 Cascaded Networks

In a cascaded network, various modules for different tasks are
combined sequentially to construct a deeper network, where the
outputs of the former modules are utilized by the latter modules.
Related studies have proposed combinations of different structures
to learn a hierarchy of features through which factors of variation
that are unrelated to expressions can be gradually filtered out.
Most commonly, different networks or learning methods are
combined sequentially and individually, and each of them con-
tributes differently and hierarchically. In [140], DBNs were trained
to first detect face expression-related areas. Then, these parsed face
components were classified by a stacked autoencoder. In [141], a
multiscale contractive convolutional network (CCNET) was pro-
posed to obtain local-translation-invariant (LTI) representations.
Then, a contractive autoencoder was designed to hierarchically
separate the emotion-related factors from subject identity and
pose. In [101], [102], overcomplete representations were first
learned using the CNN architecture, and then a multilayer RBM
was exploited to learn higher-level features for FER (see Fig. 8).
Instead of simply concatenating the outputs of different net-
works, Liu et al. [13] presented a boosted DBN (BDBN) that
iteratively performs feature representation, feature selection and
classifier construction in a unified loopy state. Compared with the
concatenation without feedback, this loopy framework propagates
the classification error backward to initiate the feature selection
process alternately until convergence. Thus, the discriminative
ability for FER can be substantially improved during this iteration.

4.3.6 Generative adversarial networks (GANSs)

Recently, GAN-based methods have been successfully used in
image synthesis to generate impressively realistic faces, numbers,
and a variety of other image types, which are beneficial to train-
ing data augmentation and the corresponding recognition tasks.
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TABLE 4
Comparison of different types of methods for static images in terms of
data size requirement, variations* (head pose, illumination, occlusion
and other environment factors), identity bias, computational efficiency,
accuracy, and difficulty on network training.

Convolution

Pooling

@ Network type data variations* identity bias efficiency accuracy difficulty
Auxiliary block  varies  good varies varies good varies
Loss layer fair good varies varies good varies
Over Complete Network ensemble low good fair low good  medium
Representation
Reospiee Hierarchical Featore Multitask network high varies good fair varies hard
v N v — Cascaded network fair good fair fair fair medium
Over-complete Representation AU-aware Receptive Fields Hierarchical Feature Learning GAN fair gOOd gOOd fair gOOd hard
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Fig. 8. Representative cascaded network for FER. The proposed AU-
aware deep network (AUDN) [101] is composed of three sequential
models: the first model trains a 2-layer CNN to obtain an overcomplete
representation encoding all expression-discriminative variations in all
possible locations; the second model contains an AU-aware receptive
field layer that searches subsets of the overcomplete representation;
and the last model is a multilayer RBM that learns hierarchical features.

Several works have proposed novel GAN-based models for pose-
invariant FER and identity-invariant FER.

For pose-invariant FER, Lai et al. [142] proposed a GAN-
based face frontalization framework, where the generator frontal-
izes input face images while preserving the identity and expres-
sion characteristics and the discriminator distinguishes the real
images from the generated frontal face images. Zhang et al.
[143] proposed a GAN-based model that can generate images
with different expressions under arbitrary poses for multiview
FER. For identity-invariant FER, Yang et al. [144] proposed an
identity-adaptive generation (IA-gen) model with two parts. The
upper part generates images of the same subject with different
expressions using cGANs. Then, the lower part conducts FER for
each single-identity subspace without involving other individuals;
thus, identity variations can be well alleviated. Chen et al. [145]
proposed a privacy-preserving representation-learning variational
GAN (PPRL-VGAN) that combines VAE and GAN to learn
an identity-invariant representation that is explicitly disentangled
from the identity information and generative for expression-
preserving face image synthesis. Yang et al. [105] proposed a
de-expression residue learning (DeRL) procedure for exploring
the expressive information, which is filtered out during the de-
expression process but still embedded in the generator. Then, the
model extracts this information from the generator directly to
mitigate the influence of subject variations and improve the FER
performance.

4.3.7 Discussion

The existing well-constructed deep FER systems focus on two key
issues: the lack of plentiful diverse training data and expression-
unrelated variations, such as illumination, head pose and identity.
Table 4 shows the relative advantages and disadvantages of these
different types of methods with respect to two open issues (data
size requirement and expression-unrelated variations) and other
focuses (computation efficiency, performance and difficulty of
network training).

Instead of the popular network architecture, various auxiliary
blocks and loss layers are specifically designed for FER to enhance
the supervision degree of the network and to learn more powerful
features with discriminate interclass separability and intraclass

compactness. However, additional blocks may influence the com-
putational efficiency of the whole network. It takes time to learn
extra hyperparameters for the new loss and find a proper trade-off
between different loss layers.

Training a deep and wide network with a large number of
hidden layers and flexible filters is an effective method for learning
deep high-level features that are discriminative for the target task.
However, this process is vulnerable to the size of the training data
and can underperform if insufficient training data are available
for learning the new parameters. Integrating multiple relatively
small networks in parallel or in series is a natural research di-
rection for overcoming this problem. Network ensemble integrates
diverse networks at the feature or decision level to combine their
advantages and is usually applied in emotion competitions to help
improve the performance. However, designing different kinds of
networks to compensate for each other obviously increases the
computational cost and the storage requirement. Moreover, the
weight of each subnetwork is usually learned according to the
performance of the original training data, leading to overfitting
on newly unseen testing data. Multitask networks jointly train
multiple networks considering interactions between the target
FER task and other secondary tasks, such as facial landmark
localization, facial AU recognition and face verification; thus, the
expression-unrelated factors, including identity bias, can be well
separated. The downside to this method is that it requires labeled
data from all tasks, and the training becomes increasingly cumber-
some as more tasks are involved. Alternatively, cascaded networks
sequentially train multiple networks in a hierarchical approach, in
which case the discriminative ability of the learned features is
continuously strengthened. In general, this method can alleviate
the overfitting problem and progressively separate factors that are
irrelevant to facial expression. A deficiency worth considering is
that the subnetworks in most existing cascaded systems are trained
individually without feedback, and the end-to-end training strategy
is preferable for enhancing training effectiveness and performance
[13].

Ideally, deep networks, especially CNNs, are good at solving
head-pose variations, yet most current FER networks have not
explicitly addressed these variations, and they have not been tested
in realistic conditions. Generative adversarial networks (GANs)
can be exploited to solve this issue by frontalizing face images
while preserving expression characteristics [142] or synthesizing
arbitrary poses to help train the pose-invariant network [143].
Another advantage of GANSs is that identity variations can be
explicitly disentangled by generating the corresponding neutral
face image [105] or synthesizing different expressions while
preserving identity information for identity-invariant FER [144].
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Moreover, GANs can help augment the training data on both
size and diversity. The main drawback of GANSs is the training
instability and the trade-off between visual quality and image
diversity.

4.4 Deep FER networks for dynamic image sequences

Although most of the previous models focus on static images, FER
can benefit from the temporal correlations of consecutive frames in
a sequence. We first introduce the existing frame aggregation tech-
niques that strategically combine deep features learned from static-
based FER networks. Then, considering that in a videostream, peo-
ple usually display the same expression with different intensities,
we further review methods that use images in different expression
intensity states for intensity-invariant FER. Finally, we introduce
deep FER networks that consider spatiotemporal motion patterns
in video frames and learned features derived from the temporal
structure. For each of the most frequently evaluated datasets,
Table 5 shows the current state-of-the-art methods conducted in
the person-independent protocol.

4.4.1 Frame aggregation

Because the frames in a given video clip may vary in expression
intensity, directly measuring per-frame error does not yield satis-
factory performance. Various methods have been proposed to ag-
gregate the network output for frames in each sequence to improve
performance. We divide these methods into two groups: decision-
level frame aggregation and feature-level frame aggregation.

For decision-level frame aggregation, n-class probability vec-
tors of each frame in a sequence are integrated. The most conve-
nient method is to directly concatenate the output of these frames.
However, the number of frames in each sequence may be different.
Two aggregation approaches have been considered to generate a
fixed-length feature vector for each sequence [00], [146]: frame
averaging and frame expansion. An alternative approach that
does not require a fixed number of frames is applying statistical
coding. The average, max, average of square, average of maximum
suppression vectors and so on can be used to summarize the per-
frame probabilities in each sequence.

For feature-level frame aggregation, the learned features of
frames in the sequence are aggregated. Many statistical-based
encoding modules can be applied in this scheme. A simple and
effective method is to concatenate the mean, variance, minimum,
and maximum of the features over all frames [85]. Alternatively,
matrix-based models such as eigenvectors, covariance matrices
and multi-dimensional Gaussian distributions can also be em-
ployed for aggregation [147], [148]. In addition, multi-instance
learning has been explored for video-level representation [149],
where the cluster centers are computed from auxiliary data and
then a bag-of-words representation is obtained for each bag of
video frames.

4.4.2 Expression intensity-invariant network

Most methods (introduced in Section 4.3) focus on recognizing
the peak high-intensity expression and ignore the subtle lower-
intensity expressions. In this section, we introduce expression
intensity-invariant networks that take training samples with differ-
ent intensities as input to exploit the intrinsic correlations among
expressions from a sequence that vary in different intensities.

In an expression intensity-invariant network, image frames
with intensity labels are used for training. During the test, data
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Fig. 9. The proposed PPDN in [17]. During training, PPDN is jointly
optimized by the L2-norm loss and the cross-entropy loss of two expres-
sion images. During testing, the PPDN takes one still image as input for
probability prediction.

that vary in expression intensity are used to verify the intensity-
invariant ability of the network. Zhao et al. [17] proposed a
peak-piloted deep network (PPDN) that takes a pair of peak and
nonpeak images with the same expression and subject identity
as input and utilizes the L2-norm loss to minimize the distance
between both images. During backpropagation, peak gradient
suppression (PGS) was proposed to drive the learned feature of
the nonpeak expression towards that of the peak expression while
avoiding the inverse. Thus, the network discriminant ability on
lower-intensity expressions can be improved (see Figure 9). Based
on PPDN, Yu et al. [75] proposed a deeper cascaded peak-piloted
network (DCPN) that used a deeper and larger architecture to
improve the discriminative ability of the learned representations
and employed an integration training method called cascade fine-
tuning to avoid overfitting. In [71], more intensity states (onset,
onset to apex transition, apex, apex to offset transition and offset)
were utilized, and five loss functions were adopted to regulate the
network training by minimizing expression classification error,
intraclass expression variation, intensity classification error and
intra-intensity variation, and encoding intermediate intensity.
Considering that images with different expression intensities
are not always available in the real world, several works have
proposed automatically acquiring the intensity label or generating
new images with targeted intensity. For example, in [159], the
peak and neutral frames were automatically selected from the
sequence in two stages: a clustering stage to divide all frames into
the peak-like group and the neutral-like group using the k-means
algorithm and a classification stage to detect peak and neutral
frames using a semisupervised SVM. In [150], a deep generative-
contrastive model was presented with two steps: a generator to
generate the reference (less-expressive) face for each sample via a
convolutional encoder-decoder and a contrastive network to jointly
filter out information that is irrelevant to expressions through a
contrastive metric loss and a supervised reconstruction loss.

4.4.3 Deep spatiotemporal FER network

Although frame aggregation can integrate frames in the video
sequence, the crucial temporal dependency is not explicitly
exploited. In contrast, the spatiotemporal FER network takes a
series of frames in a temporal window as an independent input
without prior knowledge of the expression intensity and utilizes
both textural and temporal information to encode more subtle
expressions.
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TABLE 5
Performances of representative methods for dynamic-based deep facial expression recognition on the most widely evaluated datasets. Network
size = depth & number of parameters; Preprocessing = Face detection & Data augmentation & Face normalization; IN = illumination normalization;
FA = frame aggregation; EZN = expression intensity-invariant network; 7£7 = facial landmark trajectory; CA/ = cascaded network; N'€ =
network ensemble; S = spatial network; T = temporal network; LOSO = leave-one-subject-out.

C Nef k Training data selec Testing data selecti
Datasets Methods Network u_wm Preprocessing raming a selection L_\u“g ua selection Data group Performance'(%)
type size in each sequence in cach sequence
Zhao et al. 16 [17] EIN 22 6.8m v from the 7th to the last® the last frame 10 folds 6 classes: 99.3
Yuetal. 17 [75] EIN 42 - MTCNN v from the 7th to the last® the peak expression 10 folds 6 classes: 99.6
kim et al. 17 [150] EIN 14 - v v all frames 10 folds 7 classes: 97.93
S: tional
Sunetal. 17[151] NE 3 * GoogLeNetv2 v emotiona 10 folds 6 classes: 97.28
T: neutral+emotional
CK+ Jung et al. 15 [16] FLT 2 l 177.6k IntraFace v fixed number of frames 10 folds 7 classes: 92.35
Jungetal. 15[16] C3D 4 - IntraFace v fixed number of frames the same as 10 folds 7 classes: 91.44
Jungetal. 15[16] NE FLTIC3D IntraFace v fixed number of frames the training data 10 folds s: 97.25 (95.22)
Kumawat et al. 19 [152] C3D - 1.6m v fixed length 11 10 folds 97.38 (96.65)
kuo et al. 18 [87] FA 6 2.7m IntraFace v IN fixed length 9 10 folds 7 classes: 98.47
SDM/ S: the last fi
Zhang et al. 17 [73] NE 5 2/1.6m v ¢ astframe 10 folds 7 classes: 98.50 (97.78)
Cascaded CNN T: all frames
Kimetal. 17 [71] EIN,CN 7 1.5m Incremental v 5 intensities frames LOSO 6 classes: 78.61 (78.00)
kim et al. 17 [150] EIN 14 - v v all frames 10 folds 6 classes: 81.53
Hasani et al. 17 [153] FLT,CN 22 3000 fps ten frames 5 folds 6 classes: 77.50 (74.50)
MMI Hasani et al. 17 [59] CN 29 AAM static frames the same as 5 folds 6 classes: 78.68
SDM/ S: the middle fi raini 4 N
Zhang et al. 17 [73] NE 15 2K/1.6m © middle frame the raining data 10 folds 6 classes: 81.18 (79.30)
Cascaded CNN T: all frames
Wang et al. 19 [154] FLT - SDM fixed number of frames 10 folds 6 classes: 82.21
S: emotional N
Sunetal. 17[151] NE 3 * GoogLeNetv2 v emotions 10 folds 6 classes: 91.46
T: neutral+emotional
Zhaoetal. 16 [17] EIN 22 6.8m v from the 7th to the last® the last frame 10 folds 6 classes: 84.59
Yuetal. 17 [75] EIN 42 - MTCNN v from the 7th to the last® the peak expression 10 folds 6 classes: 86.23
Jung et al. 15 [16] FLT 2 177.6k IntraFace v fixed number of frames 10 folds
Oulu- Jung etal. 15 [10] C3D 7 B IntraFace % fixed number of frames 10 folds
CASIA Jung et al. 15 [10] NE FLTIC3D IntraFace % fixed number of frames " 10 folds
e same as
Kumawat etal. 19 [152] C3D , T6m 5 % fixed length 11 © same as 10 folds 6 classes: 82.41 (82.41)
SDM/ S+ the Tast frame the training data
Zhang et al. 17 [73] NE 15 2k/1.6m ) v o 10 folds 6 classes: 86.25 (86.25)
Cascaded CNN T: all frames
kuo et al. 18 [87] NE 6 2.7m IntraFace v IN fixed length 9 10 folds 6 classes: 91.67
Ding et al. 16 [148] FA AlexNet v Training: 773; Validation: 373; Test: 593 Validation: 44.47
- Yan et al. 16 [155] CN VGG16-LSTM v v 40 frames l 3 folds 7 classes: 44.46
AFEW Yan etal. 16 [155] FLT T ] - 11561 - 30 frames 3 folds 7 classes: 37.37
6.0 Fanetal. 16 [157] CN VGG16-LSTM v 16 features for LSTM Validation: 45.43 (38.96)
Fan et al. [157] C3D 10 l - v several windows of 16 consecutive frames Validation: 39.69 (38.55)
Yan et al. 16 [155] fusion / Training: 773; Validation: 383; Test: 593 Test: 56.66 (40.81)
Fanetal. 16 [157] fusion / Training: 774; Validation: 383; Test: 593 Test: 59.02 (44.94)
Ouyang et al. 17 [76] CN VGG-LSTM MTCNN 4 16 frames Validation: 47.4
AFEW' Ouyang et al. 17 [76] C3D 10 MTCNN v 16 frames Validation: 35.2
7;} Vielzeuf et al. [158] CN C3D-LSTM v v detected face frames Validation: 43.2
: Vielzeuf et al. [158] CN VGG16-LSTM v v several windows of 16 consecutive frames Validation: 48.6
Vielzeuf et al. [155] fusion / Training: 773; Validation: 383; Test: 653 Test: 58.81 (43.23)

! The value in parentheses is the mean accuracy calculated from the confusion matrix given by the authors.

2 A pair of images (peak and nonpeak expression) is chosen for training each time.

" We included the result of a single spatiotemporal network and the best result after fusion with both video and audio modalities.
7 Classes in CK+: anger, contempt, disgust, fear, happiness, sadness, and surprise.

7 Classes in AFEW: anger, disgust, fear, happiness, neutral, sadness, and surprise.

3D convolutional kernels with shared weights along the time axis
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RNN and C3D: RNN can robustly derive information from
sequences by exploiting the fact that feature vectors for successive
data are connected semantically and are therefore interdependent.
The improved version, LSTM, is flexible to handle varying-length
sequential data with lower computation cost. Derived from
RNN, an RNN that is composed of ReLUs and initialized
with the identity matrix (IRNN) [160] was used to provide
a simple mechanism to address the exploding and vanishing
gradient problems [84]. Bidirectional RNNs (BRNNs) [161] were
employed to learn the temporal relations in both the original and
reversed directions [73], [155]. Recently, a nested LSTM [77]
was proposed with two sub-LSTMs. Namely, T-LSTM models
the temporal dynamics of the learned features, and C-LSTM
integrates the outputs of all T-LSTM models to obtain the
multilevel representations. [162] employed ConvLSTM with a
2D grid convolution to encode the spatial correlations and model
spatiotemporal relationships for the input expression sequences.

Compared with RNN, CNN is more suitable for computer
vision applications; hence, its derivative C3D [163], which uses

instead of the traditional 2D kernels, has been widely used for
dynamic-based FER (e.g., [76], [81], [157], [162], [164], [165])
to capture the spatiotemporal features. Based on C3D, many
derived structures have been designed for FER. In [166], 3D CNN
was incorporated with the DPM-inspired [167] deformable facial
action constraints to simultaneously encode dynamic motion and
discriminative part-based representations. In [16], a deep temporal
appearance network (DTAN) was proposed that employed 3D
filters without sharing weights along the timeline; hence, each
filter can vary in importance over time. Likewise, a weighted
C3D was proposed [158], where several windows of consecutive
frames were extracted from each sequence and weighted based
on their prediction scores. Instead of directly using C3D for
classification, [168] employed C3D for spatiotemporal feature
extraction and then cascaded it with DBN for prediction. In
[169], C3D was also used as a feature extractor, followed by a
NetVLAD layer [170] to aggregate the temporal information of
the motion features by learning cluster centers.
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e TABLE 6
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Fig. 10. The spatiotemporal network in [73]. The temporal network Frame aggr;gatlor} 10‘_” good no dePends fafr hlg,h
PHRNN for landmark trajectory and the spatial network MSCNN for | EXpression intensity || fair good  low fixed fair varies
identity-invariant features are trained separately. The predicted probabil- RNN |[low low  good variable low fair
ities from the two networks are fused together for spatiotemporal FER. Spatio- | C3D || high good fair fixed low fair
temporal | FLT || fair fair fair fixed low high

network CN high good good variable good fair

NE low good  good fixed good low
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Facial landmark trajectory: Related psychological studies
have shown that expressions are invoked by dynamic motions
of certain facial parts (e.g., eyes, nose and mouth) that contain
the most descriptive information for representing expressions.
To obtain more accurate facial actions for FER, facial landmark
trajectory models have been proposed to capture the dynamic
variations of facial components from consecutive frames.

To extract landmark trajectory representation, the most
direct way is to concatenate coordinates of facial landmark
points from frames over time with normalization to generate a
one-dimensional trajectory signal for each sequence [16] or to
form an image-like map as the input of CNN [155]. In addition,
the relative distance variation in each landmark in consecutive
frames can also be used to capture the temporal information [171].
Furthermore, a part-based model that divides facial landmarks into
several parts according to the facial physical structure and then
separately feeds them into the networks hierarchically is proven to
be efficient for both local low-level and global high-level feature
encoding [73] (see “PHRNN” in Fig. 10). Instead of separately
extracting the trajectory features and then inputting them into the
networks, Hasani et al. [153] incorporated the trajectory features
by replacing the shortcut in the residual unit of the original
3D Inception-ResNet with elementwise multiplication of facial
landmarks and the input tensor of the residual unit. Thus, the
landmark-based network can be trained end-to-end.

Cascaded networks: By combining the powerful perceptual
vision representations learned from CNNs with the strength of
LSTM for variable-length inputs and outputs, Donahue et al.
[172] proposed both spatially and temporally deep model that
cascades the outputs of CNNs with LSTMs for various vision
tasks involving time-varying inputs and outputs. Similar to this
hybrid network, many cascaded networks have been proposed for
FER (e.g., [71], [157], [162], [173D).

In addition to concatenating LSTM with the fully connected
layer of CNN, a hypercolumn-based system [174] extracted the
last convolutional layer features as the input of the LSTM for
longer range dependencies without losing global coherence. Most
CNN-LSTM methods train models that require the prediction to
wait until the full sequence is available and may cause delays at
test time. Hence, [175] proposed an on-the-fly prediction network
that can learn spatiotemporal features with partial expression
sequences and achieve higher recognition rates.

In addition to CNN, other network frameworks can also
be used to learn spatial features, such as convolutional sparse
autoencoder [176], 3D Inception-ResNet (3DIR) [153] and
weighted C3D [158]. Likewise, in addition to LSTM, the
conditional random fields model [59] was employed to distinguish

the temporal relations of the input sequences.

Network ensemble: A two-stream CNN for action recognition in
videos, which trained one stream of the CNN on the multiframe
dense optical flow for temporal information and the other stream
of the CNN on still images for appearance features and then fused
the outputs of two streams, was introduced by Simonyan et al.
[177]. Inspired by this architecture, several network ensemble
models have been proposed for FER.

Sun et al. [151] proposed a multichannel network that ex-
tracted the spatial information from emotion-expressing faces and
temporal information (optical flow) from the changes between
emotional and neutral faces and investigated three feature fusion
strategies: score average fusion, SVM-based fusion and neural-
network-based fusion. Zhang et al. [73] fused the temporal net-
work PHRNN (discussed in “Landmark trajectory””) and the
spatial network MSCNN (discussed in section 4.3.4) to extract the
partial-whole, geometry-appearance, and static-dynamic informa-
tion for FER (see Fig. 10). Instead of directly fusing the network
outputs with precalculated weights that may cause overfitting
problems in the testing phase, Jung et al. [16] proposed a joint
fine-tuning method that jointly trained the DTAN (discussed in
the “RNN and C3D” ), the DTGN (discussed in the “Landmark
trajectory”) and the integrated network, which outperformed the
weighted sum strategy.

4.4.4 Discussion

In the real world, people display facial expressions in a dynamic
process, e.g., from subtle to obvious, and it has become a trend
to conduct FER on sequence/video data. Table 6 summarizes the
relative merits of different types of methods on dynamic data
in regards to the capability of representing spatial and temporal
information, the requirement on training data size and frame
length (variable or fixed), the computational efficiency and the
performance.

Frame aggregation is employed to combine the learned feature
or prediction probability of each frame for a sequence-level result.
The output of each frame can be simply concatenated (fixed-
length frames are required in each sequence) or statistically
aggregated to obtain video-level representation (variable-length
frames processible). This method is computationally simple and
can achieve moderate performance if the temporal variations of
the target dataset are not complicated.

According to the fact that the expression intensity in a video
sequence varies over time, the expression intensity-invariant net-
work considers images with nonpeak expressions and further
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exploits the dynamic correlations between peak and nonpeak ex-
pressions. Commonly, image frames with specific intensity states
are needed for intensity-invariant FER.

Despite the advantages of these methods, frame aggregation
handles frames without consideration of temporal information
and subtle appearance changes, and expression intensity-invariant
networks require prior knowledge of expression intensity, which is
unavailable in real-world scenarios. By contrast, Deep spatiotem-
poral networks are designed to encode temporal dependencies in
consecutive frames and have been shown to benefit from learning
spatial features in conjunction with temporal features. RNN and
its variations (e.g., LSTM, IRNN and BRNN) and C3D are foun-
dational networks for learning spatiotemporal features. However,
the performance of these networks is barely satisfactory. RNN is
incapable of capturing powerful convolutional features. 3D filters
in C3D are applied over very short video clips ignoring long-range
dynamics. Additionally, training such a large network is computa-
tionally a problem, especially for dynamic FER where video data
are insufficient. Alternatively, facial landmark trajectory methods
extract shape features based on the physical structures of facial
morphological variations to capture dynamic facial component
activities and then apply deep networks for classification. This
method is computationally simple and can eliminate illumination
variations. However, it is sensitive to registration errors and
requires accurate facial landmark detection, which is difficult to
access in unconstrained conditions. Consequently, this method
performs less well and is more suitable to complement appearance
representations. Network ensemble is utilized to train multiple
networks for both spatial and temporal information and then
to fuse the network outputs in the final stage. Optic flow and
facial landmark trajectory can be used as temporal representations
to collaborate spatial representations. One of the drawbacks of
this framework is the precomputing and storage consumption of
optical flow or landmark trajectory vectors. Most related studies
randomly selected fixed-length video frames as input, leading to
the loss of useful temporal information. Cascaded networks were
proposed to first extract discriminative representations for facial
expression images and then input these features to sequential net-
works to reinforce the temporal information encoding. However,
this model introduces additional parameters to capture sequence
information, and the feature learning network (e.g., CNN) and the
temporal information encoding network (e.g., LSTM) in current
works are not trained jointly, which may lead to suboptimal
parameter settings. Training in an end-to-end fashion is still a long
road.

Compared with deep networks on static data, Table 3 and Table
5 demonstrate the powerful capability and popularity trend of
deep spatiotemporal networks. For instance, comparison results on
widely evaluated benchmarks (e.g., CK+ and MMI) illustrate that
training networks based on sequence data and analyzing temporal
dependency between frames can further improve the performance.
Additionally, in the EmotiW challenge 2015, only one system
employed deep spatio-networks for FER, whereas 5 of 7 reviewed
systems in the EmotiW challenge 2017 relied on such networks.

5 ADDITIONAL OPEN ISSUES

In addition to the most popular basic expression classification
task reviewed above, we further introduce a few related issues
that depend on deep neural networks and prototypical expression-
related knowledge.
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5.1 Occlusion and nonfrontal head pose

Occlusion and nonfrontal head pose, which may change the
visual appearance of the original facial expression, are two major
obstacles for automatic FER, especially in real-world scenarios.

For facial occlusion, Ranzato et al. [178] proposed a deep
generative model that used DBNs to model pixel-level features.
Cheng et al. [179] employed multilayer RBMs with a pretraining
and fine-tuning process to compress features from the occluded fa-
cial parts. Xu et al. [180] concatenated high-level learned features
transferred from two CNNs with the same structure but pretrained
on different datasets with additive occluded samples. Recently, Li
etal. [126] proposed a CNN with an attention mechanism (ACNN)
that can perceive the occlusion regions of the face and focus on
the most discriminative unoccluded regions.

For multiview FER, Zhang et al. [119] introduced a pro-
jection layer into the CNN that learned discriminative features
by weighting different facial landmarks within 2D SIFT feature
matrices without requiring facial pose estimation. Liu et al. [181]
proposed a multichannel pose-aware CNN (MPCNN) that contains
three cascaded parts to predict expression labels by minimizing
the conditional joint loss of pose and expression recognition. In
addition, generative adversarial network (GAN) technology has
been employed in [142], [143] to generate facial images with
different expressions under arbitrary poses for multiview FER.

5.2 FER on 3D static and dynamic data

Despite significant advances achieved in 2D FER, it fails to solve
two main problems: illumination changes and pose variations [28].
3D FER that uses 3D face shape models with depth information
can capture subtle facial deformations, which are naturally robust
to pose and lighting variations.

Depth images and videos [182], [183] record the intensity
of facial pixels based on distance from a depth camera, which
contains critical information of facial geometric relations. To
emphasize the dynamic deformation patterns of facial expression
motions, [184] explored the 4D FER (3D FER using dynamic
data) using a dynamic geometrical image network. Moreover,
[185] proposed estimating 3D expression coefficients from image
intensities using CNN without requiring facial landmark detection.
Thus, the model is highly robust to extreme appearance varia-
tions, including out-of-plane head rotations, scale changes, and
occlusions. To further enhance the robustness to pose variations,
[186] proposed a fast and light manifold CNN that enhances
geometry representation and highlights the shape characteristics
of expressions.

Recently, an increasing number of works have tended to
combine 2D and 3D data to improve performance. Oyedotun
et al. [187] employed CNN to jointly learn facial expression
features from both RGB and depth map latent modalities. Li et
al. [188] proposed a deep fusion CNN to explore multimodal
2D+3D FER. Specifically, six types of 2D facial attribute maps
were first extracted from 3D face scans and were then jointly fed
into the feature extraction and feature fusion subnets to learn the
optimal combination weights of 2D and 3D facial representations.
To improve this work, [189] proposed extracting deep features
from different facial parts extracted from texture and depth images
and then fusing these features together to interconnect them with
feedback.
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5.3 Facial expression synthesis

Realistic facial expression synthesis, which can generate various
facial expressions for interactive interfaces, is a hot topic. Susskind
et al. [190] demonstrated that DBN has the capacity to capture
the large range of variation in expressive appearance and can be
trained on large but sparsely labeled datasets. In light of this work,
[178], [191], [192] employed DBN with unsupervised learning to
construct facial expression synthesis systems. Kaneko et al. [115]
proposed a multitask deep network with state recognition and
key-point localization to adaptively generate visual feedback to
improve FER. With the recent success of deep generative models,
such as variational autoencoders (VAEs), adversarial autoencoders
(AAEs), and generative adversarial networks (GANs), a series of
facial expression synthesis systems have been developed based on
these models (e.g., [ 193], [194], [195], [196], [197] and [198]). Fa-
cial expression synthesis can also be applied to data augmentation
without manually collecting and labeling large datasets. Masi et al.
[199] employed CNN to synthesize new face images by increasing
face-specific appearance variation, such as expressions within the
3D textured face model.

5.4 Visualization techniques

In addition to utilizing CNN for FER, several works (e.g., [103],
[200], [201]) employed visualization techniques [202] on the
learned CNN features to qualitatively analyze how the CNN
contributes to the appearance-based learning process of FER and
to qualitatively decipher which portions of the face yield the
most discriminative information. The deconvolutional results all
indicated that the activations of some particular filters on the
learned features have strong correlations with the face regions that
correspond to facial AUs.

5.5 Other novel problems

We further discuss several novel issues that have been approached
on the basis of the prototypical expression categories and need
wider exploration. Dominant and complementary emotions have
been investigated in the FG2017 challenge [203] to recognize
more detailed emotions than basic emotions and see how different
dominant emotions influence the recognition of complementary
emotions. Real versus fake expressed emotion recognition has
been approached in the Chal.earn Looking at People Challenge
[204] to determine whether an emotion is fake or not. Deep learn-
ing techniques have been thoroughly applied by the participants of
these two challenges (e.g., [205], [206], [207]). Recently, the issue
of facial expression similarity that better mimics human visual
preferences has been explored in [208] for developing various
applications, such as expression retrieval and emotion recognition.

6 CHALLENGES AND FUTURE DIRECTIONS
6.1 Facial expression datasets

As the FER literature shifts its main focus to the challeng-
ing in-the-wild environmental conditions, many researchers have
committed to employing deep learning technologies to handle
difficulties, such as illumination variation, occlusions, nonfrontal
head poses, identity bias and the recognition of low-intensity
expressions. Given that FER is a data-driven task and that training
a sufficiently deep network to capture subtle expression-related
deformations requires a large amount of training data, the major
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challenge that deep FER systems face is the lack of training data
in terms of both quantity and quality.

Because people of different age ranges, cultures and genders
display and interpret facial expression in different ways, an ideal
facial expression dataset is expected to include abundant sample
images with precise face attribute labels, not just expression but
other attributes such as age, gender and ethnicity, which would
facilitate related research on cross-age range, cross-gender and
cross-cultural FER using deep learning techniques, such as mul-
titask deep networks and transfer learning. In addition, although
occlusion and multipose problems have received relatively wide
interest in the field of deep face recognition, occlusion-robust and
pose-invariant issues have received less attention in deep FER.
One of the main reasons is the lack of a sufficient facial expression
dataset with occlusion type and head-pose annotations.

On the other hand, accurately annotating a large volume of
image data with the large variation and complexity of natural
scenarios is an obvious impediment to the construction of expres-
sion datasets. A reasonable approach is to employ crowd-sourcing
models [34], [45], [209] under the guidance of expert annotators.
Additionally, a fully automatic labeling tool [43] refined by experts
is an alternative to provide approximate but efficient annotations.
In both cases, a subsequent reliable estimation or labeling learning
process is necessary to filter out noisy annotations. In particular,
few comparatively large-scale datasets that consider real-world
scenarios and contain a wide range of facial expressions have
recently become publicly available, i.e., EmotioNet [43], RAF-
DB [34], [44] and AffectNet [45], and we anticipate that with
advances in technology and the widespread of the Internet, more
complementary facial expression datasets will be constructed to
promote the development of deep FER.

6.2 Dataset bias and imbalanced distribution

Data bias and inconsistent annotations are very common among
different facial expression datasets due to different collecting
conditions and the subjectiveness of annotation. Recent studies
commonly evaluate their algorithms within a specific dataset and
can achieve satisfactory performance [210]. However, algorithms
evaluated via within-database protocols lack generalizability on
unseen test data, and the performance in cross-dataset settings is
greatly deteriorated due to the existing discrepancies. Furthermore,
because of the inconsistent expression annotations, FER perfor-
mance cannot keep improving when enlarging the training data by
directly merging multiple datasets [129]. Cross-database perfor-
mance is an important evaluation criterion of the generalizability
and practicability of a FER system. Deep domain adaptation and
knowledge distillation are promising trends to address this bias
[(211], [212].

Another common issue is imbalanced class distribution in
facial expressions, which is a result of the practicality of sample
acquirement. For example, collecting and annotating a happy
face is simple; however, identifying the signals of disgust, fear
and other less common expressions can be very laborious. As
shown in Table 3 and Table 5, the performance assessed in terms
of mean accuracy, which assigns equal weights to all classes,
decreases when compared with the accuracy criterion, and this
decline is especially evident in real-world datasets (e.g., SFEW
2.0 and AFEW). One solution is to resample and balance the class
distribution based on the number of samples for each class during
the preprocessing stage using data augmentation and synthesis
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[213]. Another alternative is to develop a cost-sensitive loss layer
for reweighting during network work training.

6.3

Another major issue that requires consideration is that while
FER within the categorical model has been widely acknowledged
and researched, the definition of the prototypical expressions
covers only a small portion of specific categories and cannot
capture the full repertoire of expressive behaviors for realistic
interactions. Two additional models were developed to describe
a larger range of emotional landscapes: the FACS model [10],
[137], where various facial muscle AUs were combined to describe
the visible appearance changes in facial expressions, and the
dimensional model [11], [214], where two continuous-valued vari-
ables, namely, valence and arousal, are proposed to continuously
encode small changes in the intensity of emotions. Another novel
definition, i.e., compound expression, was proposed by Du et
al. [51], who argued that several facial emotions are actually
combinations of more than one basic expression. These works
improve the characterization of facial expressions and, to some
extent, can complement the categorical model.

For instance, as discussed above, the visualization results of
CNNs have demonstrated a certain congruity between the learned
representations and the facial areas defined by AUs. Thus, we
can design deep neural network filters to distribute different
weights according to the importance degree of different facial
muscle action parts. Also, combinations of dimensional models
of affect will become even more relevant as a more natural way
of dealing with continuous data. Another current direction from
deep learning research is the visual attention-based networks that
can highlight the most relevant AU-related regions to the FER
task through attention mechanisms and allow models to learn
expression-discriminative representations.

Incorporating other affective models

6.4 Multimodal affect recognition

Finally, human expressive behaviors in realistic applications in-
volve encoding from different perspectives, and the facial expres-
sion is only one modality. With the advancement of social media
and user-generated content, a large amount of data is uploaded
by the users from various platforms, such as text (e.g., Twitter
and Facebook), image (e.g., Flickr and Instagram), audio (e.g.,
podcasts) and video (e.g., YouTube). And multimodal sentiment
analysis has become increasingly popular in processing these di-
verse modalities and analyzing human’s opinion (usually, positive
or negative) towards a certain entity [215], [216].

To combine useful information from different modalities,
recent multimodal sentiment analysis approaches focus on deep
neural networks and propose different multi-sensor data fusion
methods. Generally, the fusion methods can be categorized into
decision-level fusion and feature-level fusion [217]. In decision-
level fusion, results from different models are aggregated together
at a later stage. In feature-level fusion, features are extracted from
each modality independently at an early stage and then combined
jointly for a complete representation. For example, CNN with
multiple kernel learning (MKL) [218], [219] is employed to
fuse acoustic, visual and textual features. Other related research
proposes exploring the interactions between different modalities
and can achieve better performances in multimodal analysis. For
instance, [220] used word-level modality fusion to align each word
to corresponding video frames and audio segments. And [221]
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proposed a tensor fusion network to model both the intra-modality
and inter-modality dynamics. More recently, [222] projected the
extracted features from each modality to a four-dimensional Af-
fectiveSpace and use a convolutional fuzzy sentiment classifier
to predict the degree of a particular emotion in AffectiveSpace.
Hence, complex partial emotions can be visualized in a low
computational complexity.

Additionally, the fusion of other modalities, such as infrared
images, depth information from 3D face models and physiological
data, is becoming a promising research direction due to the large
complementarity for facial expressions and the beneficial applica-
tion value for human-computer interaction (HCI) applications.
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