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Outline

@ Convolutional Neural Network (CNN)
e Different CNN structures for image classification

e CNN for pixelwise classification
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Convolutional Neural Network (CNN)

Convolutional neural network

@ Specially designed for data with grid-like structures (LeCun et al. 98)

@ 1D grid: sequential data
@ 2D grid: image
@ 3D grid: video, 3D image volume
@ Beat all the existing computer vision technologies on object recognition
on ImageNet challenge with a large margin in 2012
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Convolutional Neural Network (CNN)

Problems of fully connected neural networks

@ Every output unit interacts with every input unit
@ The number of weights grows largely with the size of the input image
@ Pixels in distance are less correlated

Example: 1000x1000 image

1M hidden units

‘ 10”12 parameters!!!

Ranzato CVPR’13
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Convolutional Neural Network (CNN)

Locally connected neural networks

@ Sparse connectivity: a hidden unit is only connected to a local patch
(weights connected to the patch are called filter or kernel)

@ ltis inspired by biological systems, where a cell is sensitive to a small
sub-region of the input space, called a receptive field. Many cells are
tiled to cover the entire visual field.

@ The design of such sparse connectivity is based on domain knowledge.
(Can we apply CNN in frequency domain?)

Example: 1000x1000 image
1M hidden units
Filter size: 10x10
100M parameters

Ranzato CVPR'13
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Convolutional Neural Network (CNN)

Locally connected neural networks

@ The learned filter is a spatially local pattern
@ A hidden node at a higher layer has a larger receptive field in the input

@ Stacking many such layers leads to*filters”(not anymore linear) which
become increasingly “global”

Xiaogang Wang Convolutional Nueral Network



Convolutional Neural Network (CNN)

Shared weights

@ Translation invariance: capture statistics in local patches and they are
independent of locations
@ Similar edges may appear at different locations
@ Hidden nodes at different locations share the same weights. It greatly
reduces the number of parameters to learn

@ In some applications (especially images with regular structures), we
may only locally share weights or not share weights at top layers

feature m:

7 %
layer m-1 O O O O O

Weights with the same color have
identical values
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Convolutional Neural Network (CNN)

Convolution

@ Computing the responses at hidden nodes is equivalent to convoluting
the input image x with a learned filter w
@ After convolution, a filter map net is generated at the hidden layer

@ Parameter sharing causes the layer to have equivariance to translation.
A function f(x) is equivalent to a function g if f(g(x)) = g(f(x))
@ s convolution equivariant to changes in the scale or rotation?
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Convolutional Neural Network (CNN)

Zero-padding in convolutional neural network
(optional)

@ The valid feature map is smaller than the input after convolution

@ Implementation of neural networks needs to zero-pad the input x to
make it wider

@ Without zero-padding, the width of the representation shrinks by the
filter width - 1 at each layer

@ To avoid shrinking the spatial extent of the network rapidly, small filters
have to be used

(Bengio et al. Deep Learning 2014)
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Convolutional Neural Network (CNN)

Zero-padding in convolutional neural network
(optional)

@ By zero-padding in each layer, we prevent the representation from
shrinking with depth. It allows us to make an arbitrarily deep
convolutional network

000 X\ OOOOOOOOOOOOOONO®
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(Bengio et al. Deep Learning 2014)
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Convolutional Neural Network (CNN)

Downsampled convolutional layer (optional)

@ To reduce computational cost, we may want to skip some positions of
the filter and sample only every s pixels in each direction. A
downsampled convolution function is defined as

net[i,j] = (x*w)[i x s,j x §]

@ sis referred as the stride of this downsampled convolution
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Convolutional Neural Network (CNN)

Multiple filters

@ Multiple filters generate multiple feature maps
@ Detect the spatial distributions of multiple visual patterns

hidden unit /

filter response

Ranzato CVPR’13
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Convolutional Neural Network (CNN)

3D filtering when input has multiple feature maps

K
net = Z xK s wk
k=1

output feature map output feature maps

Input feature maps

Input feature maps

Ranzato CVPR’13
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Convolutional Neural Network (CNN)

Convolutional layer

Convolutional
Layer

input feature maps output feature maps

Ranzato CVPR’13

Xiaogang Wang Convolutional Nueral Network



Convolutional Neural Network (CNN)

Nonlinear activation function

@ tanh()
@ Raectified linear unit
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Convolutional Neural Network (CNN)

Local contrast normalization

@ Normalization can be done within a neighborhood along both spatial
and feature dimensions

hix,y k= MiNex,y k)

hi+1,x,y,k =
Ti,N(x,y,k)

Layeri Layeri+l
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Convolutional Neural Network (CNN)

Pooling

@ Max-pooling partitions the input image into a set of rectangles, and for
each sub-region, outputs the maximum value
@ Non-linear down-sampling

@ The number of output maps is the same as the number of input maps,
but the resolution is reduced

@ Reduce the computational complexity for upper layers and provide a
form of translation invariance

@ Average pooling can also be used

Ranzato CVPR'13

Input feature maps output feature maps
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Convolutional Neural Network (CNN)

Pooling

Pooling without downsampling (stride s = 1)
Invariance vs. information loss (even if the resolution is not reduced)

Pooling is useful if we care more about whether some feature is present
than exactly there it is. It depends on applications.

POOLING STAGE

(Bengio et al. Deep Learning 2014)
Pooling with downsampling (commonly used)
Improve computation efficiency

(Bengio et al. Deep Learning 2014)
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Convolutional Neural Network (CNN)

Possible extension of pooling

@ If we pool over the outputs of separately parameterized convolutions,
the features can learn which transformations to become invariant to

@ How to achieve scaling invariance?

L5 s
6| & o

2|5 [N

(Bengio et al. Deep Learning 2014)
Example of learned invariances: If each of these filters drive units that appear in the same max-pooling region, then

the pooling unit will detect “5”s in any rotation. By learning to have each filter be a different rotation of the “5”
template, this pooling unit has learned to be invariant to rotation. This is in contrast to translation invariance, which is
usually achieved by hard-coding the net to pool over shifted versions of a single learned filter.
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Convolutional Neural Network (CNN)

Typical architecture of CNN

@ Convolutional layer increases the number of feature maps
@ Pooling layer decreases spatial resolution
@ LCN and pooling are optional at each stage

One stage (zoom)

—={ Convol. = LCN i Pooling —»

——p[Convol. »| LCN » Pooling -

Ranzato CVPR’13
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Convolutional Neural Network (CNN)

Typical architecture of CNN

—»| Convol. = LCN — Pooling -——>

Convol.

l = Pooling

.*

Example with only two filters. Ranzato CVPR’13
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Convolutional Neural Network (CNN)

Typical architecture of CNN

One stage (zoom)

—>{ Convol. —> LCN i—: Pooling —>

Convol.

I = Pooling

A hidden unit in the first hidden layer is influenced by a small

neighborhood (equal to size of filter). Ranzato CVPR’13
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Convolutional Neural Network (CNN)

Typical architecture of CNN

One stage (zoom)

—#{ Convol. = LCN i—i Pooling i-—

Pooling ,*

A hidden unit after the poolinglayeris influenced by a larger neighborhood
(it depends on filter sizes and the sizes of poclingregions)
Ranzato CVPR’13
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Convolutional Neural Network (CNN)

Typical architecture of CNN

Input
Image
—

One stage (zoom)

T Convol. — LCN — Pooling —>

Whole system

‘ ‘ Class
Labels
N Fully Conn.
‘ ‘ ‘ Layers
1% stage 2" stage 3" stage

After a few stages, residual spatial resolution is very small.
We have learned a descriptor for the whole image. Ranzato CVPR’13
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Convolutional Neural Network (CNN)

Typical architecture of CNN

Convolution Pooling
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Convolutional Neural Network (CNN)

BP on CNN

@ Calculate sensitivity (back propagate errors) § = — 8% and update

weights in the convolutional layer and pooling layer

@ Calculating sensitivity in the convolutional layer is the same as
multilayer neural network

Convolutional layer Output

n,-1 d
Het,= YW= DLW,
=0

m=—aq

¥ = 7 Input

CNN has multiple convolutional layers. Each convolutional layer / has an input feature map (or image) x' and also
an output feature map y’. The sizes (nf( and ni,) of the input and output feature maps, and the filter size d' are
different for different convolutional layers. Each convultional layers has multiple filters, input feature maps and output
feature maps. To simplify the notation, we skip the index (/) of the convolutional layer, and assume only one filter,
one input feature map and one output feature map.
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Convolutional Neural Network (CNN)

anet

Calculate 2

in the convulutional layer

@ ltis different from neural networks without weight sharing, where each
weight W is only related to one input node and one output node

Output O O O O 3

Wﬁ

Multilayerneural

network without

weight sharing
Input X

net, :ZWJ, X, GHEIJ =
: ow

El

@ Taking 1D data as example, in CNN, assume the input layer
X = [Xo, ..., Xn,—1] is of size nyand the filter w = [w_g, ..., wy] is of size
2 x d + 1. With weight sharing, each weight in the related with multiple
input and output nodes

neti= " WmX_m

m=—d
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Convolutional Neural Network (CNN)

Update filters in the convolutional layer

oJ Onet; N
8Wm Z onet; Owm 0%

@ The gradient can be calculated from the correlation between the
sensitivity map and the input feature map

Convolutional layer Output

net, = Zx! W= Zwmka

m=d

= f(net,) Input
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Convolutional Neural Network (CNN)

Calculate sensitivities in the pooling layer

@ The input of a pooling layer / is the output feature map y' of the previous
convolutional layer. The output x'*" of the pooling layer is the input of
the next convolutional layer / + 1

@ For max pooling, the sensitivity is propagated according to the
corresponding indices built during max operation. If max pooling
regions are nonoverlapped,

Output

Keep the indices of max pooling <

Input l @
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Convolutional Neural Network (CNN)

Calculate sensitivities in the pooling layer

@ If pooling regions are overlapped and one node in the input layer
corresponds to multiple nodes in the output layer, the sensitivities are
added

Output

Keep the indices of max pooling <

Input :_
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Convolutional Neural Network (CNN)

Calculate sensitivities in the pooling layer

@ Average pooling

Qutput

Input

§,=055 &,=055
§,=055 &,=055,

@ What if average pooling and pooling regions are overlapped?
@ There is no weight to be updated in the pooling layer
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Different CNN structures for image classification

Different CNN structures for image classification

AlexNet

Clarifai

Overfeat

VGG

Deeplmage of Baidu
Network-in-network
GooglLeNet
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Different CNN structures for image classification

CNN for object recognition on ImageNet challenge

@ Krizhevsky, Sutskever, and Hinton, NIPS 2012

@ Trained on one million images of 1000 categories collected from the
web with two GPU. 2GB RAM on each GPU. 5GB of system memory

@ Training lasts for one week

@ Google and Baidu announced their new visual search engines with the
same technology six months after that

@ Google observed that the accuracy of their visual search engine was

doubled
o

U. Toronto 0.15315 Deep learning
2 U. Tokyo 0.26172 Hand-crafted
3 U. Oxford 0.26979 featuresand
4 Xerox/INRIA 027058 '°37ning models.

Bottleneck.
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Different CNN structures for image classification

ImageNet
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Different CNN structures for image classification

Model architecture-AlexNet Krizhevsky 2012

@ 5 convolutional layers and 2 fully connected layers for learning features.
@ Max-pooling layers follow first, second, and fifth convolutional layers

@ The number of neurons in each layer is given by 253440, 186624,
64896, 64896, 43264, 4096, 4096, 1000

@ 650000 neurons, 60000000 parameters, and 630000000 connections

384 384 256

Max
Max pooling
pooling

4096 4096

(Krizhevsky NIPS 2014)
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Different CNN structures for image classification

Model architecture-AlexNet Krizhevsky 2012

@ The first time deep model is shown to be effective on large scale
computer vision task.

@ The first time a very large scale deep model is adopted.
@ GPU is shown to be very effective on this large deep model.

27

Max
Max Max pooling
Stride\| o pooling pooling
227
of 4
3

4096 4096

(Krizhevsky NIPS 2014)
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Different CNN structures for image classification

Technical details

@ Normalize the input by subtracting the mean image on the training set

An input image (256x256) Minus sign The mean input image

(Krizhevsky NIPS 2014)
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Different CNN structures for image classification

Technical details

@ Choice of activation function

°
‘;
5
+
.;
4
5

+3

Very bad (slow to train) Very good (quick to train)

(Krizhevsky NIPS 2014)
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Different CNN structures for image classification

Technical details

@ Data augmentation

@ The neural net has 60M real-valued parameters and 650,000
neurons

@ It overfits a lot. 224 x 224 image regions are randomly extracted
from 256 images, and also their horizontal reflections

(Krizhevsky NIPS 2014)
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Different CNN structures for image classification

Technical details

@ Dropout

@ Independently set each hidden unit activity to zero with 0.5
probability

@ Do this in the two globally-connected hidden layers at the net’s
output

Ahidden layer's activity on a given training image

H BN Bl B BEE B

! !

A hidden unit A hidden unit
turned off by unchanged
dropout

(Krizhevsky NIPS 2014)
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Different CNN structures for image classification

96 learned low-level filters

(Krizhevsky NIPS 2014)
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Different CNN structures for image classification

Classification result

=
motor scooter leopard
mite motor scooter legpard
black widow go-kart jaguar
cockroach moped cheetah
tick fireboat bumper car snow leopard
starfish ng platform golfcart Egyptian cat
i .
. &
7 ’ -
. Y
e -
grille mushroom cherry Madagascar cat
convertible ] agaric dalmatiah squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler

(Krizhevsky NIPS 2014)
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Different CNN structures for image classification

Detection result

balance beam

cinema
marimba
parallel bars

computer keyboard

arvester

] harvester

magnetic compass thresher leatherback turtle Walker hound
puck plow sandbar English foxhound

stopwatch tractor echidna muzzle

disk brake tow truck armadillo Italian greyhound

diamondback

(Krizhevsky NIPS 2014)
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Different CNN structures for image classification

Top hidden layer can be used as feature for retrieval

(Krizhevsky NIPS 2014)
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Different CNN structures for image classification

How transferable are features in CNN networks?

@ (Yosinski et al. NIPS’14) investigate transferability of features by CNNs
@ The transferability of features by CNN is affected by

@ Higher layer neurons are more specific to original tasks
@ Layers within a CNN network might be fragilely co-adapted

@ Initializing with transferred features can improve generalization after
substantial fine-tuning on a new task
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Different CNN structures for image classification

Base tasks

@ ImageNet are divied into two groups of 500 classes, A and B

@ Two 8-layer AlexNets, baseA and baseB, are trained on the two groups,
respectively

Wi () Wao (] Was () Way (] Was [} Wae () War (] Was
labels

A

input

A

baseA

Wor () Woo (] Was )| Waa (] Wbs (| Was (] Wbr (] Wbs

labels

B

input

B

baseB

©@000000 ©OO0O0000D
©@000000 OOO0000UD
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Different CNN structures for image classification

Transfer and selffer networks

@ A selffer network BnB: the first n layers are copied from baseB and
frozen. The other higher layers are initialized randomly and trained on
dataset B. This is the control for transfer network

@ A transfer network AnB: the first n layers are copied from baseA and
frozen. The other higher layers are initialized randomly and trained
toward dataset B

Wor () Wi ) Wi () n_N_ N __N

j B B3B
> and

B3B

A3B
and

A3B

o
o
o
1

'S
'S
s

[amanl [ u_u| [Eman] o [amanl
|
|
-
|
|
|

©000000 ©000000
000000 ©000000
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Different CNN structures for image classification

Transfer and selffer networks (cont'd)

@ A selffer network BnB+: just like BnB, but where all layers learn

@ A transfer network AnB+: just like AnB, but where all layers learn

©000000 ©000000
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-
L |5
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@
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@
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Different CNN structures for image classification

Results

064 .
- if .
£ . J+
% 0.62 g A ‘ '
o Lad H °
8
5 0.60)
< *
g 0.58) 2
7 054 O baseB
& ® sciffer BB °
e
® selffer BnB
054
4 transfer AnB
& transfer AnB
05275 T 2 3 Z 5 3 7
5: Transfer + fine-tuning improves generalization
064

°
3

°
&

Top-1 accuracy (higher is better)

3: Fine-tuning recovers co-adapted interactions

2: Performance drops
due to fragile
co-adaptation

4: Performance

drops due to
representation
specificity

Layer 1 at which network is chopped and retrained
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Different CNN structures for image classification

Dissimilar datasets

@ Divide ImageNet into man-made objects A (449 classes) and natural
objects B (551 classes)

@ The transferability of features decreases as the distance between the
base task and target task increases

2 0.00
3
) e
~ —0.05
2
o Y e
< -0.10
>
8 O
3 —-0.15
& v Q
° Y
& —0.20) O reference
I=] .
< —— mean AnB, random splits
-% 029 @ mean AnB, m/n split ®
K] ¥— random features
—030— 1 2 3 4 5 6 7




Different CNN structures for image classification

Investigate components of CNNs
o
(]
o
(]
o
(]

Xiaogang Wang Convolutional Nueral Network

Kernel size

Kernel (channel) number

Stride

Dimensionality of fully connected layers
Data augmentation

Model averaging



Different CNN structures for image classification

Investigate components of CNNs (cont’d)

@ (Chatfield et al. BMVC’14) pre-train on ImageNet and fine-tune on
PASCAL VOC 2007
@ Different architectures
@ mAP: CNN-S > (marginally) CNN-M > (~%2.5) CNN-F
@ Different data augmentation
@ No augmentation
@ Flipping (almost no improvement)
@ Smaller dimension downsized to 256, cropping 224 x 224 patches
from the center and 4 corners, flipping (~ 3% improvement)

{ Arch. ‘ convl | conv2 ] conv3 ‘ conv4 I conv5 I fulle I full7 ‘ full§ I
64x11x11 256x5x5 256x3x3 256x3x3 256x3x3 4096 | 4096 | 1000 | paqt
CNN-F st. 4, pad 0 st. 1, pad 2 st. 1, pad 1 | st. 1, pad 1 | st. 1, pad 1 | drop- | drop- | soft- similar to AlexNet

LRN, x2 pool | LRN, x2 pool X2 pool out out max

96x7x7 256x5x5 | 512x3x3 | 512x3x3 | 512x3x3 4096 | 4096 | 1000 Medium
CNN-M st. 2, pad O st. 2, pad 1 st. 1, pad 1f||st. 1, pad 1} [|st. 1, pad 1} | drop- | drop- | soft- similar to Clarifai mode!
LRN, x2 pool | LRN, x2 pool - - x2 pool out out | max
96X7X7 256x5x5 512x3x3 512x3x3 512x3x3 4096 | 4096 | 1000 | Slow

CNN-S | st.2,pad0 | Bt pad1 |st.1,pad1|st.1,pad1 |st1 pad1 |drop- | drop- | soft- | similar to OverFeat
| I - - Ix3 puol

LRN, [x3 pool X2 pool out out max | Accurate model

(Chatfield et al. BMVC 2014)
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Different CNN structures for image classification

Investigate components of CNNs (cont’d)

@ Gray-scale vs. color (~ 3% drop)
@ Decrease the number of nodes in FC7

@ to 2048 (surprisingly, marginally better)
@ to 1024 (marginally better)
@ to 128 (~ 2% drop but 32x smaller feature)

@ Change the softmax regression loss to ranking hinge loss

@ Wep(lpos) > Weo(lheg) + 1 — € (€ is a slack variable)

@ ~ 2.7% improvement

@ Note, £, normalising features account for ~ 5% of accuracy for
VOC 2007

@ On ILSVRC-2012, the CNN-S achieved a top-5 error rate of 13.1%

@ CNN-F:16.7%
@ CNN-M: 13.7%
@ AlexNet: 17%
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Different CNN structures for image classification

Model architecture-Clarifai

@ Winner of ILSVRC 2013

@ Max-pooling layers follow first, second, and fifth convolutional layers

@ 11x11to 7x7, stride 4 to 2 in 1st layer (increasing resolution of feature
maps)

@ Other settings are the same as AlexNet

@ reduce the error by 2%.

‘ ‘ Val ‘ Val ‘ Test ‘
Error % Top-1 | Top-5 | Top-5
(Gunji et al., 2012) - - 26.2
(Krizhevsky et al., 2012), 1 convnet 40.7 18.2 ——
1 convnet for Clarifai 38.4 16.5 -

Nueral Network



Different CNN structures for image classification

Model architecture-Clarifai further investigation

@ More maps in the convolutional layers leads to small improvement.
@ Model averaging leads to improvement (random initialization).

\uo -
L&z \ b; 13

> *':I‘. - B Tkl =
5 M| p? . ﬁ ﬂ
1o ;s_ 25 ot

Max
Max T Max pooling 0% 4098
sr |de pooling pooling

i
Vi

Val Test

‘ Error % JA‘;ﬂp—l Top-5 ‘ Top-5
[ (Gunji et al_, 2 012) [ - [ - 26.2

(Krizhevsky et al., 2012), 1 AlexNe 40.7 18.2 ——

1 convnet for Clanfa\ 38.4 16.5 ——

5 convnets for Claf (a/}/ 36.7 15.3 15.3

1 convnet for Claﬂfa\ ‘Z/ but"with

layers 3,4,5: 512,1024,51Z maps — (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8
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Different CNN structures for image classification

Model architecture-Overfeat

@ Less pooling and more filters (384 => 512 for conv3 and 384=>1024 for
conv4/5).

Clarifai

\[” N\ R N

[ . E (o ==
i A - FERE | ol £ 1] Tense | [densd
2 S| . N
384 35 58 oot
N i
/ pooling  4T® 415

\ / Output
Layer 1 2 4 5 5 7 8
Stage conv+max | convi-max copv cofv €onv + max full full full
# channels 96 256 512 1024 1024 3072 | 4096 1000
Filter size 11x11 5x5 3x3 33 3x3 - - -
Conv. stride 4xd 1x1 1x1 1x1 1x1
Pooling size 2x2 2x2 - - 2x2
Pooling stride 2x2 2x2 - - 2x2
Zero-Padding size - - 1x1xIx1 Ix1x1x1 1xIxIxl -
Spatial mput size 231x231 24x24 12x12 12x12 12x12 6x6 Ix1 Ix1
Overfeat

top-5 error (%)
Clarifai Overfeat-5 Overfeat-7

Without data augmentation 6.5 16.97 14.18
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Different CNN structures for image classification

Model architecture-Overfeat

@ With data augmentation, more complex model has better performance.

Clarifai
\no
13 s 13
w 2 N -
384 384 236 foo

110 \ =
x
S8 — Max pooling % e
\ Str -de D:olmg ‘\ pooling

Cutput
Layer 1 2 4 5 6 ]
Stage conv+max | convlrmax | cofw cogv | comv+max || full | full Tl
# channels 96 256 512 024 024 3072 4096 1000
Filter size 11x11 5x5 3x3 3x3 3x3 -
Conv. strde axd 1x1 1x1 Ix1 ix1
Pooling size Ix2 2x2 - - 2x2
Pooling stride 2x2 2x2 - - 2x2
Zero-Padding size - - IxIxlx]l | IxixIx] TxIxIxl - - ,
Spatial input size 231x231 24x24 12x12 12x12 12x12 6x6 Ix1 1x1
Overfeat
top-5 error (%)
Clarifai Overfeat-5 Overfeat-7
With data augmentation 1476 13.52 11.97
Without data augmentation  16.5 16.97 14.18
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Different CNN structures for image classification

Model architecture-the devil of details

@ CNN-F: similar to AlexNet, but less channels in conv3-5.
@ CNN-S: the most complex one.

@ CNN-M 2048: replace the 4096 features in fc7 by 2048 features. Makes
little difference.

@ Data augmentation. The input image is downsized so that the smallest
dimension is equal to 256 pixels. Then 224 x 224 crops are extracted
from the four corners and the centre of the image.

[Arch. [ _cowl | com? [ conwd | cowd | cons ] Tulle [ Tully [Tullg]
IxTT 256x5x5 256Kk3x3 256x3x3 [ 256x3x3 [ 4096 [ 4096 [ TO00

. _ CNN-F | [st 4/pad0 | st 1,pad2 |st T pad 1 Tl"’l:. “pad 1 |St T, pad 1 | drop- | drop- | soft-
ILSV R_( -2012 (top-5 error) LRN, x2 pool [ LRN, x2 pool - - x2pool | out | out | max
(a) Clarifai 1 ConvNet 16.0 96xTx 256x5%5 ST2x3x3 | 512x3x3 | 512x3x3 | 4096 [ 4096 [ T00C
- CNN-M| st 2,pad0 | st 2.pad1 [st 1. pad1|st I pad1|st 1, pad 1|drop- |drop- | soft-

EB;) gﬁﬁ {[ }2; LRN, x2 pool | LRN, x2 pool - - x2pool | out | out | max
( 35 Tox 7x T36x5%5 | ST2x3x3 | SI2x3x3 | SI2x3x3 | 4006 | 4006 | 1000 |

((?J) ggﬁ 21 2048 ]I"'"I CNN-S | st 2,pad0 | [st. 1Jpad 1 st 1,pad1|st. I,pad 1 |st 1,pad I|drop- |drop- | soft-

LRN.x3 pool | x2 pool - x3pool | out | out | max

Clarifai | 96x7x7 256x5x5 | 384x3x3 | 384x3x3 |256x3x3 (4096 | 4096|4096
st. 2, st. 2, pad1 |st. 1,pad1|st. 1,pad1|st. 1,pad1|drop |drop |drop
LRN,x2 pool | LRN,x2 pool
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Different CNN structures for image classification

Model architecture-very deep CNN

ConvNet Configuration
@ The deep model . I - o S -
VGG in 2014. Il weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
H iput (224 x 224 RGB 1mage]
° Apply 3 X 3 fllter conv3-64 conv3-64 pcof:\'3—64 conv3-64 )con\=3—64 conv3-64
for all layers. | LRN | conv3-64 | conv3-64 | convi-64 ‘ comv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 conv3-128
@ 11 Iayers (A) to | | conv3-128 | conv3-128 | ‘ comv3-128
maxpool
19 Iayers (E) Conv3-256 comv3256 | conv3-256 com3-256
conv3-256 comv3-256 | conv3-256 conv3-256
conv1-256 | conv3-256 | comv3-256
conv3-256
maxpool
conv3-512 comv3-512 | conv3-512 conv3-512
conv3-512 comv3-512 | conv3-512 conv3-512
conv1-512 conv3-512
conv3-512
maxpool
conv3-512 | conw3-512 | conv3-512 | conv3-512 conv3-512
conv3-512 | conv3-512 [ comv3-512 | conv3-512 conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max
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Different CNN structures for image classification

Model architecture- very deep CNN

@ The deep model VGG in 2014.
@ Better to have deeper layers. 11 layers (A) => 16 layers (D).
@ From 16 layers (D) to 19 layers (E), accuracy does not improve.

ConvNet Configuration
A A-LRN B C D E
11weight | 11 weight | 13 weight | 16weight | 16 weight | 19 weight
layers layers layers layers layers layers
ConvNet config. (Table 1) smallest image side top-1 val. error (%) | top-5 val. error (%)
tramn (5) test ((J)
A 256 256 29.6 10.4
A-LRN 256 256 297 105
B 256 256 28.7 9.9
256 256 28.1 9.4
Cc 384 384 281 9.3
[256,512] 384 273 88
256 256 27.0 88
D 384 384 26.8 87
[256;512] 384 25.6 81
256 256 273 9.0
E 384 384 26.9 87
[256;512] 384 25.5 8.0

Xiaogang W.
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Different CNN structures for image classification

Model architecture- very deep CNN

@ Scale jittering at the training time.

@ The crop size is fixed to 224 x 224.

@ S: the smallest side of an isotropically-rescaled training image.

@ Scale jittering at the training time: [256; 512]: randomly select S to be
within [256 512].

@ LRN: local response normalisation. A-LRN does not improve on A.

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16weight | 16 weight | 19 weight
layers layers layers layers layers layers
ConvNet conﬁg. (Table 1) smallest image side top-1 val. error (%) | top-5 val. error (%)
train (.S) test ((Q)
A 256 256 29.6 10.4
A-LRN 256 256 29.7 10.5
B 256 256 28.7 9.9
256 256 28.1 9.4
C 384 384 28.1 9.3
| 1256,512] 384 273 88
256 256 27.0 88
D 384 384 2638 87
[256:512] 384 25.6 8.1
256 256 273 9.0
E 384 384 26.9 87
[256:512] 384 255 8.0

Xiaogang W. lutional Nueral Network



Different CNN structures for image classification

Model architecture- very deep CNN

@ Multi-scale averaging at the testing time.
@ The crop size is fixed to 224 x 224.
@ Q: the smallest side of an isotropically-rescaled testing image.

@ Running a model over several rescaled versions of a test image
(corresponding to different Q), followed by averaging the resulting class
posteriors. Improves accuracy (25.5 => 24.8).

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
ConvNet config. (Table 1) smallest image side top-1 val. error (%) | top-5 val. error (%)
fram (5) test (Q)
B 256 224,256,288 282 9.6
256 234756,288 277 9.2
C 384 352,384,416 278 92
[256; 512 | 256,384,512 263 8.2
256 224,256.288 26.6 8.6
D 384 352384 416 26.5 8.6
[256; 512] | 256,383,512 738 73
256 224,256,288 269 8.7
E 384 352,384,416 26.7 8.6
[256; 512] | 256384512 248 7.5

Xiaogang W. C lutional Nueral Network



Different CNN structures for image classification

Model architecture- Deeplmage of Baidu

@ The deep model of Baidu in 2015.

@ More hidden nodes at the fully connected layer (FC1-2), upto 8192.

@ 16 layers.
Table 4: Single model comparison.
Team Top-1 val. error Top-5 val. error
GoogLeNet [21] - 7.89%
VGG [20] 25.9% 8.0%
Deep Image 24.88% 7.42%
Layers \ Conv 1-2 Conv 3-4 ) Conv 5-6-7 '
T Gilters ] & Max pool 3% Max pool 2% Max pool
onv 8.9 onv 11-12-13 5 ~3
Conv §-9-10 Max pool Conv 11-12-13 Max pool FC1-2 | FC3 Sofimax
512 512 6144 | 1000

lutional Nueral Network




Different CNN structures for image classification

Model architecture- Deeplmage of Baidu

@ The deep model of Baidu in 2015.

@ More hidden nodes at the fully connected layer (FC1-2), upto 8192.

@ 16 layers.
@ Data augmentation.

Table 4: Single model comparison.

size is 512x512)

224, input image

Xiaoga

Convoluti

| Nueral Network

Team Top-1 val. error Top-5 val. error
GoogLeNet [21] - 7.89%
VGG [20] 25.9% 8.0%
Deep Image 24.88% 7.42%
j;‘l:l ]‘ S 0]:5\41-1 Max pool CO;‘;;'4 Max pool < 0“;‘,;'0' Max pool
Conv 8-9-10 Max pool Conv11-12-13 Max pool FC1-2 | FC3 Softmax
512 . 512 _ _ 6144 | 1000
Augmentation The number of p ible changes
Color casting 68920
Vignetting 1960
Lens distortion 260
Rotation 20
Flipping 2
Cropping 82944 (crop size is 224x




Different CNN structures for image classification

Model architecture- Deeplmage of Baidu

@ Data augmentation.

4

Original Red color Green color Blue color
|_ casting I_ casting | casting

—— g e— TYER COIT ST

RGB all

Blue casting v
changed

More vignette l_ vignette

Vignette
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Different CNN structures for image classification

Model architecture- Deeplmage of Baidu

@ Data augmentation.

a A
Left rotation Right rotation Pincushion

More vertical
stretch

Horizontal || More horizontal
stretch 7 stretch

Vertical stretch |

Xiaogang Wang Convolutional Nueral Network



Different CNN structures for image classification

Model architecture- Network in Network

@ Use 1x1 filters after each convolutional layer.

Input patch Output feature vector Output feature vector
(cIxhxw) (€2x1x1) (©3x1x1)
Convolutional Filter . 1 il
(€2xclxhxw) C Filter
(c3xe2xIxl)
—_— _—
Convolutional layer CCCP layer

Efficient implementation of CCCP

Convolutional Nueral Network



Different CNN structures for image classification

Model architecture- Network in Network

@ Remove the two fully connected layers (fc6, fc7) of the AlexNet but add
NIN into the AlexNet.

1000

3 ‘ ’ A -
- Feed to Softma;

Parameter Number Performance  Time to train (GTX Titan)
AlexNet 60 Million (230 Megabytes) | 40.7% (Top 1) | 8 days
NIN 7.5 Million (29 Megabytes) | 39.2% (Top 1) | 4 days

lutional Nueral Network



Different CNN structures for image classification

Model architecture- GoogleNet

@ Inspired by the good performance of NIN.

[ ) =
Network |‘n network

i ' ’
\

_We need to go deeper

Google

Xiaogang Wang Convolutional Nueral Network



Different CNN structures for image classification

Model architecture- GoogleNet

@ Inception model.
@ Variable filter sizes to capture different visual patterns of different sizes.
Enforce sparse connection between previous layer and output.

@ The 1 x 1 convolutions are used for reducing the number of maps from
the previous layer.

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 4 [ Ly

&tions 1x1 convolutions 3x3 max pooling
"

Previous layer

Nueral Network




Different CNN structures for image classification

Model architecture- GoogleNet

@ Based on inception model.
@ Cascade of inception models.

@ Widths of inception modules ranges from 256 filters (in early modules)
to 1024 in top inception modules.

Xiaogang Wang Convolutional Nueral Network



Different CNN structures for image classification

Model architecture- GoogleNet

@ Parameters.

type Wmi‘ D‘:E‘m depth | #1x1 :m:(_; #3x3 :d’:u:‘ #5x5 ';;’3: params | ops
convolution T=T/2 112x 11264 1 27K 34M
max pool 93,2 0

convelution 3x3/1 56 x 56 192 2 o4 192 1IK | 360M
max pool 3<3/2 | 28x28x1 [

imception (3a) 28x28x256 2 o4 96 128 16 32 32 159K 123M
inception (3b) 3828480 2 128 128 192 32 06 64 3R0K | 3MM
max pool Ax3/2 14x 14480 L}

imnception (4a) 14x14x512 2 192 96 208 16 48 64 364K M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K BEM
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
mception (4d) 14x14x528 112 144 288 32 64 64 S80K 119M
inception (4¢) 14x14x 832 2 256 160 30 32 128 128 B40K

max pool 323/2 [

imnception (5a) 2 160 320 32 128 128 54M
inception (5b) 2 384 192 384 48 128 128 TiIM
avg pool Tx7/1 0

dropout (40%) o

lincar 1 1000K ™M
softmax 0

| Nueral Network



CNN for pixelwise classification

CNN for pixelwise classification

@ Forward and backward propagation algorithms were proposed for
whole-image classification: predicting a single label for a whole image

@ Pixelwise classification: predicting a label at every pixel (e.g.
segmentation, detection, and tracking)

@ For pixelwise classification problems, it is generally trained and tested in
a patch-by-patch manner, i.e. cropping a large patch around every pixel
and inputting the patch to CNN for prediction (larger patches leading to
better performance)

@ It involves much redundant computation and is extremely inefficient

Input Image Target Label Map

CNN Predictions Labels

== Patches ; g <

%; CNN CNN o <>

: -: 7 . H Layer Layer
AT L et

Xiaogang Wang Convolutional Nueral Network



CNN for pixelwise classification

Directly Predict Segmentation Maps

xu
wh hair
w(l W(J Wfi W(l [1
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Wy
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E 3 [
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: .
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CNN for pixelwise classification

Directly Predict Segmentation Maps

@ Classifier is location sensitive has no translation invariance

@ Prediction not only depends on the neighborhood of the pixel, but
also its location

@ Only suitable for images with regular structures, such as faces and
humans

Xiaogang Wang Convolutional Nueral Network



CNN for pixelwise classification

Fully convolutional network

@ One solution is to use fully convolutional network (Kang and Wang,
arXiv:1411.4464)

@ The convolution and pooling kernels can be directly applied to a full
input image

@ For fully connected layers, they can be converted into convolution layers

27
13 13 13
s . K- 3&\#*_7. —
& il 3 -3 den:

_ by = 13 AN - 13 = 13 S dense)

3 £\ P

384 384 256 100
Max
256

Max Max pooling L4299 4096
pooling pooling

(Krizhevsky NIPS 2014)
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CNN for pixelwise classification

Convert FC layers to convolution layers

@ For FC layers following a convolution or a pooling layer

@ Size of the input for the FC layer: C x M x M

@ Size of the output for the FC layer: N

@ Size of the converted convolution kernels: C x M x M
@ Number of the converted convolution kernels: N

@ For FC layers following another FC layer

@ Size of the input for the FC layer: M

Size of the output for the FC layer: N

Size of the converted convolution kernels: M x 1 x 1
Number of the converted convolution kernels: N

Xiaogang Wang Convolutional Nueral Network



CNN for pixelwise classification

Down-sampling due to greater-than-1 strides

@ The output of fully convolutional network is down-sampled due to the
greater-than-1 strides in convolution and pooling layers

AlexNet

HTw N = O

l

~N o wn

25 a0 s 4‘
0 100 200 300 400
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CNN for pixelwise classification

Fully convolutional neural networks with 1 x 1 kernels

S - '*_ @%ﬂ
1 Y e - "ﬁﬁ“

(a) CNN Patcl g (b) CNN (c) FCNN Segmentation (d) FCNN Feature Maps

— = Convolution-pooling layers
C000000000] Fully connected layers lFu5|0n convolutional layers

implemented by 1 x 1 kernel

Xiaogang Wang Convolutional Nueral Network



CNN for pixelwise classification

Fully convolutional networks with no down-sampling

@ (Li, Zhao and Wang, arXiv:1412.4526) introduce d-regularly sparse
kernels to avoid down-sampling

@ The algorithm generates exactly the same results as patch-by-patch
training and testing while speeds up the computation more than 1,500X

Prediction Map Target Label Map

CNN

CNN
Layer

CNN
Layer

—
«

Backward Selecting Errors on

, Forward ’
Propagation Propagation Pixels via Error Mask
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CNN for pixelwise classification

d-regularly convolution and pooling kernels

@ d of original dense kernels is 1
@ Insert all-zero rows and columns to create d-regularly sparse kernels

3 x 3 convolution kernel 2 x 2 pooling kernel
d=2
[P N d—3

Converted convolution kernel Converted pooling kernel

Xiaogang Wang Convolutional Nueral Network



CNN for pixelwise classification

The algorithm

@ Set stride to 1 for all convolution and pooling layers

Algorithm 1: Efficient Forward Propagation of CNN

Input: Input image I, convolution parameters W, by,

pooling kernels Py, strides of each layer dj,

begin
d« 1
Tl I
fork ={1,2,--. K} do
if Layer k == convolution luyer then
Convert Wy, to Wr.q
Uk < Wiea " 25 + b,
else if Layer k == pooling layer then
Convert Py to Py 4
Yk Pk,d @l Tk
end
d+ d x dy
Th+1 < Yk
end
return output feature map yp
end

Convolutional Nueral Network



CNN for pixelwise classification

A toy example

@ Net architecture

Layer input patch conv1 pooli
size / stride 15 x 15 2x2/1|2x2/2

Layer conv2 pool2 conv3
size / stride 2x2/1 3x338 |2x2/1

@ A5 x 5inputis properly padded to 19 x 19
@ The 15 x 15 topleft patch is used for comparison

15 x 15 padded image 15 x 15 topleft patch

Xiaogang Wang Convolutional Nueral Network



CNN for pixelwise classification

pool1 & conv2

e “E= P
1 ::7,1" ISR, E:_>
PEH@ = mot £
2,1 P, H
H Y2
Z2 Y2 T2
Proposed pool1 Original pool1
DR __._i
=E2 *! :Dl:i
s ST »- il
W, B~ =
3 Y3 P Y3
Proposed conv2 Original conv2
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CNN for pixelwise classification

pool2 & conv3

!:l:H:l:l:F:z:_ B
AR EEREE L

Proposed pool2

MR s
Ys

Ws.6 Ts
Proposed conv3

m- fiflee
P4 '%4 .U4

Original pool2

M EH=de
Ws Z5 Us
Original conv3
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CNN for pixelwise classification
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CNN for pixelwise classification
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