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Deep learning applies multiple processing layers to learn representations of data with multiple levels of
feature extraction. This emerging technique has reshaped the research landscape of face recognition (FR)
since 2014, launched by the breakthroughs of DeepFace and DeepID. Since then, deep learning technique,
characterized by the hierarchical architecture to stitch together pixels into invariant face representation,
has dramatically improved the state-of-the-art performance and fostered successful real-world applica-
tions. In this survey, we provide a comprehensive review of the recent developments on deep FR, covering
broad topics on algorithm designs, databases, protocols, and application scenes. First, we summarize dif-
ferent network architectures and loss functions proposed in the rapid evolution of the deep FR methods.
Second, the related face processing methods are categorized into two classes: ‘‘one-to-many augmenta-
tion” and ‘‘many-to-one normalization”. Then, we summarize and compare the commonly used data-
bases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such
as cross-factor, heterogenous, multiple-media and industrial scenes. Finally, the technical challenges
and several promising directions are highlighted.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Face recognition (FR) has been the prominent biometric tech-
nique for identity authentication and has been widely used in
many areas, such as military, finance, public security and daily life.
FR has been a long-standing research topic in the CVPR commu-
nity. In the early 1990s, the study of FR became popular following
the introduction of the historical Eigenface approach [1]. The mile-
stones of feature-based FR over the past years are presented in
Fig. 1, in which the times of four major technical streams are high-
lighted. The holistic approaches derive the low-dimensional repre-
sentation through certain distribution assumptions, such as linear
subspace [2–4], manifold [5–7], and sparse representation [8–11].
This idea dominated the FR community in the 1990s and 2000s.
However, a well-known problem is that these theoretically plausi-
ble holistic methods fail to address the uncontrolled facial changes
that deviate from their prior assumptions. In the early 2000s, this
problem gave rise to local-feature-based FR. Gabor [12] and LBP
[13], as well as their multilevel and high-dimensional extensions
[14–16], achieved robust performance through some invariant
properties of local filtering. Unfortunately, handcrafted features
suffered from a lack of distinctiveness and compactness. In the
early 2010s, learning-based local descriptors were introduced to
the FR community [17–19], in which local filters are learned for
better distinctiveness and the encoding codebook is learned for
better compactness. However, these shallow representations still
have an inevitable limitation on robustness against the complex
nonlinear facial appearance variations.

In general, traditional methods attempted to recognize human
face by one or two layer representations, such as filtering
responses, histogram of the feature codes, or distribution of the
dictionary atoms. The research community studied intensively to
separately improve the preprocessing, local descriptors, and fea-
ture transformation, but these approaches improved FR accuracy
slowly. What’s worse, most methods aimed to address one aspect
of unconstrained facial changes only, such as lighting, pose, expres-
sion, or disguise. There was no any integrated technique to address
these unconstrained challenges integrally. As a result, with contin-
uous efforts of more than a decade, ‘‘shallow” methods only
improved the accuracy of the LFW benchmark to about 95% [15],
which indicates that ‘‘shallow” methods are insufficient to extract
stable identity feature invariant to real-world changes. Due to the
insufficiency of this technical, facial recognition systems were
often reported with unstable performance or failures with count-
less false alarms in real-world applications.

But all that changed in 2012 when AlexNet won the ImageNet
competition by a large margin using a technique called deep learn-
ing [22]. Deep learning methods, such as convolutional neural net-
works, use a cascade of multiple layers of processing units for
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Fig. 1. Milestones of face representation for recognition. The holistic approaches dominated the face recognition community in the 1990s. In the early 2000s, handcrafted
local descriptors became popular, and the local feature learning approaches were introduced in the late 2000s. In 2014, DeepFace [20] and DeepID [21] achieved a
breakthrough on state-of-the-art (SOTA) performance, and research focus has shifted to deep-learning-based approaches. As the representation pipeline becomes deeper and
deeper, the LFW (Labeled Face in-the-Wild) performance steadily improves from around 60% to above 90%, while deep learning boosts the performance to 99.80% in just three
years.
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feature extraction and transformation. They learn multiple levels
of representations that correspond to different levels of abstrac-
tion. The levels form a hierarchy of concepts, showing strong
invariance to the face pose, lighting, and expression changes, as
shown in Fig. 2. It can be seen from the figure that the first layer
of the deep neural network is somewhat similar to the Gabor fea-
ture found by human scientists with years of experience. The sec-
ond layer learns more complex texture features. The features of the
third layer are more complex, and some simple structures have
begun to appear, such as high-bridged nose and big eyes. In the
fourth, the network output is enough to explain a certain facial
attribute, which can make a special response to some clear abstract
concepts such as smile, roar, and even blue eye. In conclusion, in
deep convolutional neural networks (CNN), the lower layers auto-
matically learn the features similar to Gabor and SIFT designed for
years or even decades (such as initial layers in Fig. 2), and the
higher layers further learn higher level abstraction. Finally, the
combination of these higher level abstraction represents facial
identity with unprecedented stability.

In 2014, DeepFace [20] achieved the SOTA accuracy on the
famous LFW benchmark [23], approaching human performance
on the unconstrained condition for the first time (DeepFace:
97.35% vs. Human: 97.53%), by training a 9-layer model on 4 mil-
lion facial images. Inspired by this work, research focus has shifted
to deep-learning-based approaches, and the accuracy was dramat-
ically boosted to above 99.80% in just three years. Deep learning
technique has reshaped the research landscape of FR in almost
all aspects such as algorithm designs, training/test datasets, appli-
cation scenarios and even the evaluation protocols. Therefore, it is
of great significance to review the breakthrough and rapid devel-
opment process in recent years. There have been several surveys
on FR [24–28] and its subdomains, and they mostly summarized
and compared a diverse set of techniques related to a specific FR
scene, such as illumination-invariant FR [29], 3D FR [28], pose-
invariant FR [30,31]. Unfortunately, due to their earlier publication
dates, none of them covered the deep learning methodology that is
most successful nowadays. This survey focuses only on recognition
problem, and one can refer to Ranjan et al. [32] for a brief review of
a full deep FR pipeline with detection and alignment, or refer to Jin
et al. [33] for a survey of face alignment. Specifically, the major
contributions of this survey are as follows:
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� A systematic review on the evolution of the network architec-
tures and loss functions for deep FR is provided. Various loss
functions are categorized into Euclidean-distance-based loss,
angular/cosine-margin-based loss and softmax loss and its vari-
ations. Both the mainstream network architectures, such as
Deepface [20], DeepID series [34,35,21,36], VGGFace [37], Face-
Net [38], and VGGFace2 [39], and other architectures designed
for FR are covered.

� We categorize the new face processing methods based on deep
learning, such as those used to handle recognition difficulty on
pose changes, into two classes: ‘‘one-to-many augmentation”
and ‘‘many-to-one normalization”, and discuss how emerging
generative adversarial network (GAN) [40] facilitates deep FR.

� We present a comparison and analysis on public available data-
bases that are of vital importance for both model training and
testing. Major FR benchmarks, such as LFW [23], IJB-A/B/C
[41–43], Megaface [44], and MS-Celeb-1 M [45], are reviewed
and compared, in term of the four aspects: training methodol-
ogy, evaluation tasks and metrics, and recognition scenes,
which provides an useful reference for training and testing deep
FR.

� Besides the general purpose tasks defined by the major data-
bases, we summarize a dozen scenario-specific databases and
solutions that are still challenging for deep learning, such as
anti-attack, cross-pose FR, and cross-age FR. By reviewing spe-
cially designed methods for these unsolved problems, we
attempt to reveal the important issues for future research on
deep FR, such as adversarial samples, algorithm/data biases,
and model interpretability.

The remainder of this survey is structured as follows. In Sec-
tion 2, we introduce some background concepts and terminolo-
gies, and then we briefly introduce each component of FR. In
Section 3, different network architectures and loss functions
are presented. Then, we summarize the face processing algo-
rithms and the datasets. In Section 5, we briefly introduce sev-
eral methods of deep FR used for different scenes. Finally, the
conclusion of this paper and discussion of future works are pre-
sented in Section 6.



Fig. 2. The hierarchical architecture that stitches together pixels into invariant face representation. Deep model consists of multiple layers of simulated neurons that
convolute and pool input, during which the receptive-field size of simulated neurons are continually enlarged to integrate the low-level primary elements into multifarious
facial attributes, finally feeding the data forward to one or more fully connected layer at the top of the network. The output is a compressed feature vector that represent the
face. Such deep representation is widely considered as the SOTA technique for face recognition.

M. Wang and W. Deng Neurocomputing 429 (2021) 215–244
2. Overview

2.1. Components of Face Recognition

As mentioned in [32], there are three modules needed for FR
system, as shown in Fig. 3. First, a face detector is used to localize
faces in images or videos. Second, with the facial landmark detec-
tor, the faces are aligned to normalized canonical coordinates.
Third, the FR module is implemented with these aligned face
images. We only focus on the FR module throughout the remainder
of this paper.

Before a face image is fed to an FR module, face anti-spoofing,
which recognizes whether the face is live or spoofed, is applied
to avoid different types of attacks. Then, recognition can be per-
formed. As shown in Fig. 3(c), an FR module consists of face pro-
cessing, deep feature extraction and face matching, and it can be
described as follows:

M F Pi Iið Þð Þ; F Pj Ij
� �� �� � ð1Þ

where Ii and Ij are two face images, respectively. P stands for face
processing to handle intra-personal variations before training and
testing, such as poses, illuminations, expressions and occlusions. F
denotes feature extraction, which encodes the identity information.
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The feature extractor is learned by loss functions when training, and
is utilized to extract features of faces when testing. M means a face
matching algorithm used to compute similarity scores of features to
determine the specific identity of faces. Different from object classi-
fication, the testing identities are usually disjoint from the training
data in FR, which makes the learned classifier cannot be used to rec-
ognize testing faces. Therefore, face matching algorithm is an essen-
tial part in FR.
2.1.1. Face processing
Although deep-learning-based approaches have been widely

used, Mehdipour et al. [46] proved that various conditions, such
as poses, illuminations, expressions and occlusions, still affect the
performance of deep FR. Accordingly, face processing is introduced
to address this problem. The face processing methods are catego-
rized as ‘‘one-to-many augmentation” and ‘‘many-to-one normal-
ization”, as shown in Table 1.

� ‘‘One-to-many augmentation”. These methods generate many
patches or images of the pose variability from a single image
to enable deep networks to learn pose-invariant
representations.



Table 1
Different data preprocessing approaches.

Data processing Brief Description Subsettings

one to many These methods generate many patches or images of
the pose variability from a single image

3D model [47–54]
2D deep model [55–57]

data augmentation [58–60,35,21,36,61,62]
many to one These methods recover the canonical view of face

images from one or many images of nonfrontal view
Antoencoder [63–67]

CNN [68,69]
GAN [70–73]

Table 2
Different network architectures of FR.

Network
Architectures

Subsettings

backbone
network

mainstream architectures: AlexNet [80,81,38], VGGNet
[37,47,82], GoogleNet [83,38], ResNet [84,82], SENet [39]

light-weight architectures [85,86,61,87]
adaptive architectures [88–90]

joint alignment-recognition architectures [91–94]
assembled
networks

multipose [95–98], multipatch [58–60,99,34,21,35], mul-
titask [100]

Fig. 3. Deep FR system with face detector and alignment. First, a face detector is used to localize faces. Second, the faces are aligned to normalized canonical coordinates.
Third, the FR module is implemented. In FR module, face anti-spoofing recognizes whether the face is live or spoofed; face processing is used to handle variations before
training and testing, e.g. poses, ages; different architectures and loss functions are used to extract discriminative deep feature when training; face matching methods are used
to do feature classification after the deep features of testing data are extracted.
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� ‘‘Many-to-one normalization”. These methods recover the
canonical view of face images from one or many images of a
nonfrontal view; then, FR can be performed as if it were under
controlled conditions.

Note that we mainly focus on deep face processing method
designed for pose variations in this paper, since pose is widely
regarded as a major challenge in automatic FR applications and
other variations can be solved by the similar methods.
2.1.2. Deep feature extraction
Network Architecture. The architectures can be categorized as

backbone and assembled networks, as shown in Table 2. Inspired
by the extraordinary success on the ImageNet [74] challenge, the
typical CNN architectures, e.g. AlexNet, VGGNet, GoogleNet,
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ResNet and SENet [22,75–78], are introduced and widely used as
the baseline models in FR (directly or slightly modified). In addi-
tion to the mainstream, some assembled networks, e.g. multi-
task networks and multi-input networks, are utilized in FR. Hu
et al. [79] shows that accumulating the results of assembled net-
works provides an increase in performance compared with an indi-
vidual network.

Loss Function. The softmax loss is commonly used as the
supervision signal in object recognition, and it encourages the sep-
arability of features. However, the softmax loss is not sufficiently
effective for FR because intra-variations could be larger than
inter-differences and more discriminative features are required
when recognizing different people. Many works focus on creating
novel loss functions to make features not only more separable
but also discriminative, as shown in Table 3.

2.1.3. Face matching by deep features
FR can be categorized as face verification and face identification.

In either scenario, a set of known subjects is initially enrolled in the
system (the gallery), and during testing, a new subject (the probe)
is presented. After the deep networks are trained on massive data
with the supervision of an appropriate loss function, each of the
test images is passed through the networks to obtain a deep fea-
ture representation. Using cosine distance or L2 distance, face ver-
ification computes one-to-one similarity between the gallery and
probe to determine whether the two images are of the same sub-
ject, whereas face identification computes one-to-many similarity
to determine the specific identity of a probe face. In addition to
these, other methods are introduced to postprocess the deep fea-
tures such that the face matching is performed efficiently and



Table 3
Different loss functions for FR.

Loss Functions Brief Description

Euclidean-distance-
based loss

These methods reduce intra-variance and enlarge
inter-variance based on Euclidean distance.
[21,35,36,101,102,82,38,37,80,81,58,103]

angular/cosine-
margin-based loss

These methods make learned features potentially
separable with larger angular/cosine distance.
[104,84,105–108]

softmax loss and its
variations

These methods modify the softmax loss to improve
performance, e.g. features or weights normalization.
[109–115]
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accurately, such as metric learning, sparse-representation-based
classifier (SRC), and so forth.

To sum up, we present FR modules and their commonly-used
methods in Fig. 4 to help readers to get a view of the whole FR.
In deep FR, various training and testing face databases are con-
structed, and different architectures and losses of deep FR always
follow those of deep object classification and are modified accord-
ing to unique characteristics of FR. Moreover, in order to address
unconstrained facial changes, face processing methods are further
designed to handle poses, expressions and occlusions variations.
Benefiting from these strategies, deep FR system significantly
improves the SOTA and surpasses human performance. When the
applications of FR becomes more and more mature in general sce-
nario, recently, different solutions are driven for more difficult
specific scenarios, such as cross-pose FR, cross-age FR, video FR.

3. Network architecture and training loss

For most applications, it is difficult to include the candidate
faces during the training stage, which makes FR become a ‘‘zero-
shot” learning task. Fortunately, since all human faces share a sim-
ilar shape and texture, the representation learned from a small
proportion of faces can generalize well to the rest. Based on this
theory, a straightforward way to improve generalized performance
is to include as many IDs as possible in the training set. For exam-
ple, Internet giants such as Facebook and Google have reported
their deep FR system trained by 106 � 107 IDs [38,20].

Unfortunately, these personal datasets, as well as prerequisite
GPU clusters for distributed model training, are not accessible for
academic community. Currently, public available training data-
bases for academic research consist of only 103 � 105 IDs. Instead,
Fig. 4. FR studies have begun with general scenario, then gradually get close to more rea
pose FR, cross-age FR, video FR. In specific scenarios, targeted training and testing databas
based on the special requirements.
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academic community makes effort to design effective loss func-
tions and adopts efficient architectures to make deep features
more discriminative using the relatively small training data sets.
For instance, the accuracy of most popular LFW benchmark has
been boosted from 97% to above 99.8% in the pasting four years,
as enumerated in Table 4. In this section, we survey the research
efforts on different loss functions and network architectures that
have significantly improved deep FR methods.

3.1. Evolution of discriminative loss functions

Inheriting from the object classification network such as Alex-
Net, the initial Deepface [20] and DeepID [34] adopted cross-
entropy based softmax loss for feature learning. After that, people
realized that the softmax loss is not sufficient by itself to learn dis-
criminative features, and more researchers began to explore novel
loss functions for enhanced generalization ability. This becomes
the hottest research topic in deep FR research, as illustrated in
Fig. 5. Before 2017, Euclidean-distance-based loss played an impor-
tant role; In 2017, angular/cosine-margin-based loss as well as fea-
ture and weight normalization became popular. It should be noted
that, although some loss functions share the similar basic idea, the
new one is usually designed to facilitate the training procedure by
easier parameter or sample selection.

3.1.1. Euclidean-distance-based loss
Euclidean-distance-based loss is a metric learning method

[118,119] that embeds images into Euclidean space in which
intra-variance is reduced and inter-variance is enlarged. The con-
trastive loss and the triplet loss are the commonly used loss func-
tions. The contrastive loss [35,21,36,61,120] requires face image
pairs, and then pulls together positive pairs and pushes apart neg-
ative pairs.

L ¼ yijmax 0; f xið Þ � f xj
� ��� ��

2 � �þ
� �

þ 1� yij
� �

max 0; �� � f xið Þ � f xj
� ��� ��

2

� �
ð2Þ

where yij ¼ 1 means xi and xj are matching samples and yij ¼ 0
means non-matching samples. f �ð Þ is the feature embedding, �þ

and �� control the margins of the matching and non-matching pairs
respectively. DeepID2 [21] combined the face identification (soft-
max) and verification (contrastive loss) supervisory signals to learn
a discriminative representation, and joint Bayesian (JB) was applied
to obtain a robust embedding space. Extending from DeepID2 [21],
listic applications and drive different solutions for specific scenarios, such as cross-
e are constructed, and face processing, architectures and loss functions are modified



Table 4
The accuracy of different methods evaluated on the LFW dataset.

Method Public.
Time

Loss Architecture Number of
Networks

Training Set Accuracy ± Std
(%)

DeepFace [20] 2014 softmax Alexnet 3 Facebook (4.4 M,4 K) 97.35 ± 0.25
DeepID2 [21] 2014 contrastive loss Alexnet 25 CelebFaces+ (0.2 M,10 K) 99.15 ± 0.13
DeepID3 [36] 2015 contrastive loss VGGNet-10 50 CelebFaces+ (0.2 M,10 K) 99.53 ± 0.10
FaceNet [38] 2015 triplet loss GoogleNet-
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1 Google (500 M,10 M) 99.63 ± 0.09

Baidu [58] 2015 triplet loss CNN-9 10 Baidu (1.2 M,18 K) 99.77
VGGface [37] 2015 triplet loss VGGNet-16 1 VGGface (2.6 M,2.6 K) 98.95
light-CNN [85] 2015 softmax light CNN 1 MS-Celeb-1 M (8.4 M,100 K) 98.8

Center Loss [101] 2016 center loss Lenet+-7 1 CASIA-WebFace, CACD2000, Celebrity+
(0.7 M,17 K)

99.28

L-softmax [104] 2016 L-softmax VGGNet-18 1 CASIA-WebFace (0.49 M,10 K) 98.71
Range Loss [82] 2016 range loss VGGNet-16 1 MS-Celeb-1 M, CASIA-WebFace (5 M,100 K) 99.52
L2-softmax [109] 2017 L2-softmax ResNet-101 1 MS-Celeb-1 M (3.7 M,58 K) 99.78
Normface [110] 2017 contrastive loss ResNet-28 1 CASIA-WebFace (0.49 M,10 K) 99.19
CoCo loss [112] 2017 CoCo loss - 1 MS-Celeb-1 M (3 M,80 K) 99.86
vMF loss [115] 2017 vMF loss ResNet-27 1 MS-Celeb-1 M (4.6 M,60 K) 99.58
Marginal Loss

[116]
2017 marginal loss ResNet-27 1 MS-Celeb-1 M (4 M,80 K) 99.48

SphereFace [84] 2017 A-softmax ResNet-64 1 CASIA-WebFace (0.49 M,10 K) 99.42
CCL [113] 2018 center invariant

loss
ResNet-27 1 CASIA-WebFace (0.49 M,10 K) 99.12

AMS loss [105] 2018 AMS loss ResNet-20 1 CASIA-WebFace (0.49 M,10 K) 99.12
Cosface [107] 2018 cosface ResNet-64 1 CASIA-WebFace (0.49 M,10 K) 99.33
Arcface [106] 2018 arcface ResNet-100 1 MS-Celeb-1 M (3.8 M,85 K) 99.83
Ring loss [117] 2018 Ring loss ResNet-64 1 MS-Celeb-1 M (3.5 M,31 K) 99.50

Fig. 5. The development of loss functions. It marks the beginning of deep FR that Deepface [20] and DeepID [34] were introduced in 2014. After that, Euclidean-distance-
based loss always played the important role in loss function, such as contractive loss, triplet loss and center loss. In 2016 and 2017, L-softmax [104] and A-softmax [84]
further promoted the development of the large-margin feature learning. In 2017, feature and weight normalization also begun to show excellent performance, which leads to
the study on variations of softmax. Red, green, blue and yellow rectangles represent deep methods using softmax, Euclidean-distance-based loss, angular/cosine-margin-
based loss and variations of softmax, respectively.
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DeepID2+ [35] increased the dimension of hidden representations
and added supervision to early convolutional layers. DeepID3 [36]
further introduced VGGNet and GoogleNet to their work. However,
the main problem with the contrastive loss is that the margin
parameters are often difficult to choose.

Contrary to contrastive loss that considers the absolute dis-
tances of the matching pairs and non-matching pairs, triplet loss
considers the relative difference of the distances between them.
Along with FaceNet [38] proposed by Google, Triplet loss
[38,37,81,80,58,60] was introduced into FR. It requires the face tri-
plets, and then it minimizes the distance between an anchor and a
positive sample of the same identity and maximizes the distance
between the anchor and a negative sample of a different identity.

FaceNet made f xai
� �� f xpi

� ��� ��2
2 þ a < � f xai

� �� f xni
� ��� ��2

2using hard
triplet face samples, where xai ; x

p
i and xni are the anchor, positive

and negative samples, respectively, a is a margin and f �ð Þ repre-
sents a nonlinear transformation embedding an image into a fea-
ture space. Inspired by FaceNet [38], TPE [81] and TSE [80]
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learned a linear projection W to construct triplet loss. Other meth-
ods optimize deep models using both triplet loss and softmax loss
[59,58,60,121]. They first train networks with softmax and then
fine-tune them with triplet loss.

However, the contrastive loss and triplet loss occasionally
encounter training instability due to the selection of effective
training samples, some paper begun to explore simple alternatives.
Center loss [101] and its variants [82,116,102] are good choices for
reducing intra-variance. The center loss [101] learned a center for
each class and penalized the distances between the deep features
and their corresponding class centers. This loss can be defined as
follows:

LC ¼ 1
2

Xm
i¼1

xi � cyi
�� ��2

2 ð3Þ

where xi denotes the i-th deep feature belonging to the yi-th class
and cyi denotes the yi-th class center of deep features. To handle
the long-tailed data, a range loss [82], which is a variant of center



1 The time we present is when the paper was published.
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loss, is used to minimize k greatest range’s harmonic mean values in
one class and maximize the shortest inter-class distance within one
batch. Wu et al. [102] proposed a center-invariant loss that penal-
izes the difference between each center of classes. Deng et al.
[116] selected the farthest intra-class samples and the nearest
inter-class samples to compute a margin loss. However, the center
loss and its variants suffer from massive GPU memory consumption
on the classification layer, and prefer balanced and sufficient train-
ing data for each identity.

3.1.2. Angular/cosine-margin-based loss
In 2017, people had a deeper understanding of loss function in

deep FR and thought that samples should be separated more
strictly to avoid misclassifying the difficult samples. Angular/
cosine-margin-based loss [104,84,105,106,108] is proposed to
make learned features potentially separable with a larger angular/-
cosine distance. The decision boundary in softmax loss is
W1 �W2ð Þxþ b1 � b2 ¼ 0, where x is feature vector, Wi and bi are
weights and bias in softmax loss, respectively. Liu et al. [104] refor-
mulated the original softmax loss into a large-margin softmax (L-
Softmax) loss. They constrain b1 ¼ b2 ¼ 0, so the decision bound-
aries for class 1 and class 2 become xk k W1k kcos mh1ð Þ�ð
W2k kcos h2ð ÞÞ ¼ 0 and xk k W1k k W2k kcos h1ð Þ � cos mh2ð Þð Þ ¼ 0,
respectively, where m is a positive integer introducing an angular
margin, and hi is the angle between Wi and x. Due to the non-
monotonicity of the cosine function, a piece-wise function is
applied in L-softmax to guarantee the monotonicity. The loss func-
tion is defined as follows:

Li ¼ �log
ekWyikkxiku hyið Þ

e
kWyikkxiku hyið Þþ

X
j–yi

e
kWyikkxikcos hjð Þ

0
BBB@

1
CCCA ð4Þ

where

u hð Þ ¼ �1ð Þkcos mhð Þ � 2k; h 2 kp
m

;
kþ 1ð Þp

m

	 

ð5Þ

Considering that L-Softmax is difficult to converge, it is always
combined with softmax loss to facilitate and ensure the conver-
gence. Therefore, the loss function is changed into:

f yi ¼
k Wyik k xik kcos hyið Þþ Wyik k xik ku hyið Þ

1þk , where k is a dynamic hyper-
parameter. Based on L-Softmax, A-Softmax loss [84] further nor-
malized the weightW by L2 norm ( Wk k ¼ 1) such that the normal-
ized vector will lie on a hypersphere, and then the discriminative
face features can be learned on a hypersphere manifold with an
angular margin (Fig. 6). Liu et al. [108] introduced a deep hyper-
spherical convolution network (SphereNet) that adopts hyper-
spherical convolution as its basic convolution operator and is
supervised by angular-margin-based loss. To overcome the opti-
mization difficulty of L-Softmax and A-Softmax, which incorporate
the angular margin in a multiplicative manner, ArcFace [106] and
CosFace [105], AMS loss [107] respectively introduced an additive
angular/cosine margin cos hþmð Þ and cosh�m. They are extremely
easy to implement without tricky hyper-parameters k, and are
more clear and able to converge without the softmax supervision.
The decision boundaries under the binary classification case are
given in Table 5. Based on large margin, FairLoss [122] and Adap-
tiveFace [123] further proposed to adjust the margins for different
classes adaptively to address the problem of unbalanced data.
Compared to Euclidean-distance-based loss, angular/cosine-
margin-based loss explicitly adds discriminative constraints on a
hypershpere manifold, which intrinsically matches the prior that
human face lies on a manifold. However, Wang et al. [124] showed
that angular/cosine-margin-based loss can achieve better results
221
on a clean dataset, but is vulnerable to noise and becomes worse
than center loss and softmax in the high-noise region as shown
in Fig. 7.

3.1.3. Softmax loss and its variations
In 2017, in addition to reformulating softmax loss into an

angular/cosine-margin-based loss as mentioned above, some
works tries to normalize the features and weights in loss functions
to improve the model performance, which can be written as
follows:

cW ¼ W
Wk k ; x̂ ¼ a

x
xk k ð6Þ

where a is a scaling parameter, x is the learned feature vector, W is
weight of last fully connected layer. Scaling x to a fixed radius a is
important, as Wang et al. [110] proved that normalizing both fea-
tures and weights to 1 will make the softmax loss become trapped
at a very high value on the training set. After that, the loss function,
e.g. softmax, can be performed using the normalized features and
weights.

Some papers [84,108] first normalized the weights only and
then added angular/cosine margin into loss functions to make
the learned features be discriminative. In contrast, some works,
such as [109,111], adopted feature normalization only to overcome
the bias to the sample distribution of the softmax. Based on the
observation of [125] that the L2-norm of features learned using
the softmax loss is informative of the quality of the face, L2-
softmax [109] enforced all the features to have the same L2-
norm by feature normalization such that similar attention is given
to good quality frontal faces and blurry faces with extreme pose.
Rather than scaling x to the parameter a, Hasnat et al. [111] nor-
malized features with x̂ ¼ x�lffiffiffiffi

r2
p , where l and r2 are the mean and

variance. Ring loss [117] encouraged the norm of samples being
value R (a learned parameter) rather than explicit enforcing
through a hard normalization operation. Moreover, normalizing
both features and weights [110,112,115,105,106] has become a
common strategy. Wang et al. [110] explained the necessity of this
normalization operation from both analytic and geometric per-
spectives. After normalizing features and weights, CoCo loss
[112] optimized the cosine distance among data features, and Has-
nat et al. [115] used the von Mises-Fisher (vMF) mixture model as
the theoretical basis to develop a novel vMF mixture loss and its
corresponding vMF deep features.

3.2. Evolution of network architecture

3.2.1. Backbone network
Mainstream architectures. The commonly used network archi-

tectures of deep FR have always followed those of deep object clas-
sification and evolved from AlexNet to SENet rapidly. We present
the most influential architectures of deep object classification
and deep face recognition in chronological order 1 in Fig. 8.

In 2012, AlexNet [22] was reported to achieve the SOTA recog-
nition accuracy in the ImageNet large-scale visual recognition
competition (ILSVRC) 2012, exceeding the previous best results
by a large margin. AlexNet consists of five convolutional layers
and three fully connected layers, and it also integrates various
techniques, such as rectified linear unit (ReLU), dropout, data aug-
mentation, and so forth. ReLU was widely regarded as the most
essential component for making deep learning possible. Then, in
2014, VGGNet [75] proposed a standard network architecture that
used very small 3� 3 convolutional filters throughout and doubled
the number of feature maps after the 2 � 2 pooling. It increased the



Table 5
Decision boundaries for class 1 under binary classification case, where x̂ is the
normalized feature. [106]

Loss Functions Decision Boundaries

Softmax W1 �W2ð Þxþ b1 � b2 ¼ 0
L-Softmax [104] xk k W1k kcos mh1ð Þ � W2k kcos h2ð Þð Þ > 0
A-Softmax [84] xk k cosmh1 � cosh2ð Þ ¼ 0
CosFace [105] x̂ cosh1 �m� cosh2ð Þ ¼ 0
ArcFace [106] x̂ cos h1 þmð Þ � cosh2ð Þ ¼ 0

Fig. 6. Geometry interpretation of A-Softmax loss. [84].
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depth of the network to 16–19 weight layers, which further
enhanced the flexibility to learn progressive nonlinear mappings
by deep architectures. In 2015, the 22-layer GoogleNet [76] intro-
duced an ‘‘inception module” with the concatenation of hybrid fea-
ture maps, as well as two additional intermediate softmax
supervised signals. It performs several convolutions with different
receptive fields (1� 1;3� 3 and 5� 5) in parallel, and concate-
nates all feature maps to merge the multi-resolution information.
In 2016, ResNet [77] proposed to make layers learn a residual map-
ping with reference to the layer inputs F xð Þ :¼ H xð Þ � x rather than
Fig. 7. 1:1 M rank-1 identification results on MegaFace benchmark: (a) introduci
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directly learning a desired underlying mapping H xð Þ to ease the
training of very deep networks (up to 152 layers). The original
mapping is recast into F xð Þ þ x and can be realized by ‘‘shortcut
connections”. As the champion of ILSVRC 2017, SENet [78] intro-
duced a ‘‘Squeeze-and-Excitation” (SE) block, that adaptively recal-
ibrates channel-wise feature responses by explicitly modelling
interdependencies between channels. These blocks can be inte-
grated with modern architectures, such as ResNet, and improves
their representational power.

With the evolved architectures and advanced training tech-
niques, such as batch normalization (BN), the network becomes
deeper and the training becomes more controllable. Following
these architectures in object classification, the networks in deep
FR are also developed step by step, and the performance of deep
FR is continually improving. We present these mainstream archi-
tectures of deep FR in Fig. 9. In 2014, DeepFace [20] was the first
to use a nine-layer CNN with several locally connected layers. With
3D alignment for face processing, it reaches an accuracy of 97.35%
on LFW. In 2015, FaceNet [38] used a large private dataset to train a
GoogleNet. It adopted a triplet loss function based on triplets of
roughly aligned matching/nonmatching face patches generated
ng label flips to training data, (b) introducing outliers to training data. [124].



Fig. 8. The top row presents the typical network architectures in object classification, and the bottom row describes the well-known FR algorithms that use the typical
architectures. We use the same color rectangles to represent the algorithms using the same architecture. It is easy to find that the architectures of deep FR have always
followed those of deep object classification and evolved from AlexNet to SENet rapidly.

Fig. 9. The architecture of Alexnet [22], VGGNet [75], GoogleNet [76], ResNet [77], SENet [78].
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by a novel online triplet mining method and achieved good perfor-
mance of 99.63%. In the same year, VGGface [37] designed a proce-
dure to collect a large-scale dataset from the Internet. It trained the
VGGNet on this dataset and then fine-tuned the networks via a tri-
plet loss function similar to FaceNet. VGGface obtains an accuracy
of 98.95%. In 2017, SphereFace [84] used a 64-layer ResNet archi-
tecture and proposed the angular softmax (A-Softmax) loss to learn
discriminative face features with angular margin. It boosts the
achieves to 99.42% on LFW. In the end of 2017, a new large-scale
face dataset, namely VGGface2 [39], was introduced, which con-
sists of large variations in pose, age, illumination, ethnicity and
profession. Cao et al. first trained a SENet with MS-celeb-1 M data-
set [45] and then fine-tuned the model with VGGface2 [39], and
achieved the SOTA performance on the IJB-A [41] and IJB-B [42].

Light-weight networks. Using deeper neural network with
hundreds of layers and millions of parameters to achieve higher
accuracy comes at cost. Powerful GPUs with larger memory size
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are needed, which makes the applications on many mobiles and
embedded devices impractical. To address this problem, light-
weight networks are proposed. Light CNN [85,86] proposed a
max-feature-map (MFM) activation function that introduces the
concept of maxout in the fully connected layer to CNN. The MFM
obtains a compact representation and reduces the computational
cost. Sun et al. [61] proposed to sparsify deep networks iteratively
from the previously learned denser models based on a weight
selection criterion. MobiFace [87] adopted fast downsampling
and bottleneck residual block with the expansion layers and
achieved high performance with 99.7% on LFW database. Although
some other light-weight CNNs, such as SqueezeNet, MobileNet,
ShuffleNet and Xception [126–129], are still not widely used in
FR, they deserve more attention.

Adaptive-architecture networks. Considering that designing
architectures manually by human experts are time-consuming
and error-prone processes, there is growing interest in adaptive-
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architecture networks which can find well-performing architec-
tures, e.g. the type of operation every layer executes (pooling, con-
volution, etc) and hyper-parameters associated with the operation
(number of filters, kernel size and strides for a convolutional layer,
etc), according to the specific requirements of training and testing
data. Currently, neural architecture search (NAS) [130] is one of the
promising methodologies, which has outperformed manually
designed architectures on some tasks such as image classification
[131] or semantic segmentation [132]. Zhu et al. [88] integrated
NAS technology into face recognition. They used reinforcement
learning [133] algorithm (policy gradient) to guide the controller
network to train the optimal child architecture. Besides NAS, there
are some other explorations to learn optimal architectures adap-
tively. For example, conditional convolutional neural network (c–
CNN) [89] dynamically activated sets of kernels according to
modalities of samples; Han et al. [90] proposed a novel contrastive
convolution consisted of a trunk CNN and a kernel generator,
which is beneficial owing to its dynamistic generation of con-
trastive kernels based on the pair of faces being compared.

Joint alignment-recognition networks. Recently, an end-to-
end system [91–94] was proposed to jointly train FR with several
modules (face detection, alignment, and so forth) together. Com-
pared to the existing methods in which each module is generally
optimized separately according to different objectives, this end-
to-end system optimizes each module according to the recognition
objective, leading to more adequate and robust inputs for the
recognition model. For example, inspired by spatial transformer
[134], Hayat et al. [91] proposed a CNN-based data-driven
approach that learns to simultaneously register and represent faces
(Fig. 10), while Wu et al. [92] designed a novel recursive spatial
transformer (ReST) module for CNN allowing face alignment and
recognition to be jointly optimized.
3.2.2. Assembled networks
Multi-input networks. In ‘‘one-to-many augmentation”, multi-

ple images with variety are generated from one image in order to
augment training data. Taken these multiple images as input, mul-
tiple networks are also assembled together to extract and combine
features of different type of inputs, which can outperform an indi-
vidual network. In [58–60,99,34,21,35], assembled networks are
built after different face patches are cropped, and then different
types of patches are fed into different sub-networks for represen-
tation extraction. By combining the results of sub-networks, the
performance can be improved. Other papers [96,95,98] used
assembled networks to recognize images with different poses.
For example, Masi et al. [96] adjusted the pose to frontal (0�),
half-profile (40�) and full-profile views (75�) and then addressed
pose variation by assembled pose networks. A multi-view deep
network (MvDN) [95] consists of view-specific subnetworks and
common subnetworks; the former removes view-specific varia-
tions, and the latter obtains common representations.

Multi-task networks. FR is intertwined with various factors,
such as pose, illumination, and age. To solve this problem, multi-
task learning is introduced to transfer knowledge from other rele-
vant tasks and to disentangle nuisance factors. In multi-task
networks, identity classification is the main task and the side tasks
are pose, illumination, and expression estimations, among others.
The lower layers are shared among all the tasks, and the higher lay-
ers are disentangled into different sub-networks to generate the
task-specific outputs. In [100], the task-specific sub-networks are
branched out to learn face detection, face alignment, pose estima-
tion, gender recognition, smile detection, age estimation and FR.
Yin et al. [97] proposed to automatically assign the dynamic loss
weights for each side task. Peng et al. [135] used a feature recon-
struction metric learning to disentangle a CNN into sub-networks
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for jointly learning the identity and non-identity features as shown
in Fig. 11.

3.3. Face matching by deep features

During testing, the cosine distance and L2 distance are generally
employed to measure the similarity between the deep features x1
and x2; then, threshold comparison and the nearest neighbor
(NN) classifier are used to make decision for verification and iden-
tification. In addition to these common methods, there are some
other explorations.

3.3.1. Face verification
Metric learning, which aims to find a new metric to make two

classes more separable, can also be used for face matching based
on extracted deep features. The JB [136] model is a well-known
metric learning method [35,21,36,34,120], and Hu et al. [79]
proved that it can improve the performance greatly. In the JB
model, a face feature x is modeled as x ¼ lþ e, where l and e
are identity and intra-personal variations, respectively. The simi-
larity score r x1; x2ð Þ can be represented as follows:

r x1; x2ð Þ ¼ log
P x1; x2jHIð Þ
P x1; x2jHEð Þ ð7Þ

where P x1; x2jHIð Þ is the probability that two faces belong to the
same identity and P x1; x2jHEð Þ is the probability that two faces
belong to different identities.

3.3.2. Face identification
After cosine distance was computed, Cheng et al. [137] pro-

posed a heuristic voting strategy at the similarity score level to
combine the results of multiple CNN models and won first place
in Challenge 2 of MS-celeb-1 M 2017. Yang et al. [138] extracted
the local adaptive convolution features from the local regions of
the face image and used the extended SRC for FR with a single sam-
ple per person. Guo et al. [139] combined deep features and the
SVM classifier to perform recognition. Wang et al. [62] first used
product quantization (PQ) [140] to directly retrieve the top-k most
similar faces and re-ranked these faces by combining similarities
from deep features and the COTS matcher [141]. In addition, Soft-
max can be also used in face matching when the identities of train-
ing set and test set overlap. For example, in Challenge 2 of MS-
celeb-1 M, Ding et al. [142] trained a 21,000-class softmax classi-
fier to directly recognize faces of one-shot classes and normal
classes after augmenting feature by a conditional GAN; Guo et al.
[143] trained the softmax classifier combined with
underrepresented-classes promotion (UP) loss term to enhance
the performance on one-shot classes.

When the distributions of training data and testing data are the
same, the face matching methods mentioned above are effective.
However, there is always a distribution change or domain shift
between two data domains that can degrade the performance on
test data. Transfer learning [144,145] has recently been introduced
into deep FR to address the problem of domain shift. It learns
transferable features using a labeled source domain (training data)
and an unlabeled target domain (testing data) such that domain
discrepancy is reduced and models trained on source domain will
also perform well on target domain. Sometimes, this technology is
applied to face matching. For example, Crosswhite et al. [121] and
Xiong et al. [146] adopted template adaptation to the set of media
in a template by combining CNN features with template-specific
linear SVMs. But most of the time, it is not enough to do transfer
learning only at face matching stage. Transfer learning should be
embedded in deep models to learn more transferable representa-
tions. Kan et al. [147] proposed a bi-shifting autoencoder network



Fig. 10. Joint face registration and representation learning. [91].

Fig. 11. Reconstruction-based disentanglement for pose-invariant FR. [135].
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(BAE) for domain adaptation across view angle, ethnicity, and
imaging sensor; while Luo et al. [148] utilized the multi-kernels
maximum mean discrepancy (MMD) to reduce domain discrepan-
cies. Sohn et al. [149] used adversarial learning [150] to transfer
knowledge from still image FR to video FR. Moreover, fine-tuning
the CNN parameters from a prelearned model using a target train-
ing dataset is a particular type of transfer learning, and is com-
monly employed by numerous methods [151,152,103].

4. Face processing for training and recognition

We present the development of face processing methods in
chronological order in Fig. 12. As we can see from the figure, most
papers attempted to perform face processing by autoencoder
model in 2014 and 2015; while 3D model played an important role
in 2016. GAN [40] has drawn substantial attention from the deep
learning and computer vision community since it was first pro-
posed by Goodfellow et al. It can be used in different fields and
was also introduced into face processing in 2017. GAN can be used
to perform ‘‘one-to-many augmentation” and ‘‘many-to-one nor-
malization”, and it broke the limit that face synthesis should be
done under supervised way. Although GAN has not been widely
used in face processing for training and recognition, it has great
latent capacity for preprocessing, for example, Dual-Agent GANs
(DA-GAN) [56] won the 1st places on verification and identification
tracks in the NIST IJB-A 2017 FR competitions.

4.1. One-to-many augmentation

Collecting a large database is extremely expensive and time
consuming. The methods of ‘‘one-to-many augmentation” can
mitigate the challenges of data collection, and they can be used
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to augment not only training data but also the gallery of test data.
we categorized them into four classes: data augmentation, 3D
model, autoencoder model and GAN model.

Data augmentation. Common data augmentation methods
consist of photometric transformations [75,22] and geometric
transformations, such as oversampling (multiple patches obtained
by cropping at different scales) [22], mirroring [153], and rotating
[154] the images. Recently, data augmentation has been widely
used in deep FR algorithms [58–60,35,21,36,61,62]. for example,
Sun et al. [21] cropped 400 face patches varying in positions, scales,
and color channels and mirrored the images. Liu et al. [58] gener-
ated seven overlapped image patches centered at different land-
marks on the face region and trained them with seven CNNs
with the same structure.

3D model. 3D face reconstruction is also a way to enrich the
diversity of training data. They utilize 3D structure information
to model the transformation between poses. 3D models first use
3D face data to obtain morphable displacement fields and then
apply them to obtain 2D face data in different pose angles. There
is a large number of papers about this domain, but we only focus
on the 3D face reconstruction using deep methods or used for deep
FR. In [47], Masi et al. generated face images with new intra-class
facial appearance variations, including pose, shape and expression,
and then trained a 19-layer VGGNet with both real and augmented
data. Masi et al. [48] used generic 3D faces and rendered fixed
views to reduce much of the computational effort. Richardson
et al. [49] employed an iterative 3D CNN by using a secondary
input channel to represent the previous network’s output as an
image for reconstructing a 3D face as shown in Fig. 13. Dou et al.
[51] used a multi-task CNN to divide 3D face reconstruction into
neutral 3D reconstruction and expressive 3D reconstruction. Tran
et al. [53] directly regressed 3D morphable face model (3DMM)



Fig. 12. The development of deep face processing methods. Red, green, orange and blue rectangles represent CNN model, autoencoder model, 3D model and GAN model,
respectively.

Fig. 13. Iterative CNN network for reconstructing a 3D face. [49].
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[155] parameters from an input photo by a very deep CNN archi-
tecture. An et al. [156] synthesized face images with various poses
and expressions using the 3DMM method, then reduced the gap
between synthesized data and real data with the help of MMD.

Autoencoder model. Rather than reconstructing 3D models
from a 2D image and projecting it back into 2D images of different
poses, autoencoder models can generate 2D target images directly.
Taken a face image and a pose code encoding a target pose as input,
an encoder first learns pose-invariant face representation, and then
a decoder generates a face image with the same identity viewed at
the target pose by using the pose-invariant representation and the
pose code. For example, given the target pose codes, multi-view
perceptron (MVP) [55] trained some deterministic hidden neurons
to learn pose-invariant face representations, and simultaneously
trained some random hidden neurons to capture pose features,
then a decoder generated the target images by combining pose-
invariant representations with pose features. As shown in Fig. 14,
Yim et al. [157] and Qian et al. [158] introduced an auxiliary
CNN to generate better images viewed at the target poses. First,
an autoencoder generated the desired pose image, then the auxil-
iary CNN reconstructed the original input image back from the
generated target image, which guarantees that the generated
image is identity-preserving. In [65], two groups of units are
embedded between encoder and decoder. The identity units
remain unchanged and the rotation of images is achieved by taking
actions to pose units at each time step.

GAN model. In GAN models, a generator aims to fool a discrim-
inator through generating images that resemble the real images,
while the discriminator aims to discriminate the generated sam-
ples from the real ones. By this minimax game between generator
and discriminator, GAN can successfully generate photo-realistic
images with different poses. After using a 3D model to generate
profile face images, DA-GAN [56] refined the images by a GAN,
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which combines prior knowledge of the data distribution and
knowledge of faces (pose and identity perception loss). CVAE-
GAN [159] combined a variational auto-encoder with a GAN for
augmenting data, and took advantages of both statistic and pair-
wise feature matching to make the training process converge faster
and more stably. In addition to synthesizing diverse faces from
noise, some papers also explore to disentangle the identity and
variation, and synthesize new faces by exchanging identity and
variation from different people. In CG-GAN [160], a generator
directly resolves each representation of input image into a varia-
tion code and an identity code and regroups these codes for
cross-generating, simultaneously, a discriminator ensures the real-
ity of generated images. Bao et al. [161] extracted identity repre-
sentation of one input image and attribute representation of any
other input face image, then synthesized new faces by recombining
these representations. This work shows superior performance in
generating realistic and identity preserving face images, even for
identities outside the training dataset. Unlike previous methods
that treat classifier as a spectator, FaceID-GAN [162] proposed a
three-player GAN where the classifier cooperates together with
the discriminator to compete with the generator from two differ-
ent aspects, i.e. facial identity and image quality respectively.
4.2. Many-to-one normalization

In contrast to ‘‘one-to-many augmentation”, the methods of
‘‘many-to-one normalization” produce frontal faces and reduce
appearance variability of test data to make faces align and compare
easily. It can be categorized as autoencoder model, CNN model and
GAN model.

Autoencoder model. Autoencoder can also be applied to
‘‘many-to-one normalization”. Different from the autoencoder
model in ‘‘one-to-many augmentation” which generates the



Fig. 14. Autoencoder model of ‘‘one-to-many augmentation” proposed by [157]. The first part extracts feature from an input image, then the second and third part generate a
target image with the same identity viewed at the target pose. The forth part is an auxiliary task which reconstructs the original input image back from the generated image to
guarantee that the generated image is identity-preserving.
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desired pose images with the help of pose codes, autoencoder
model here learns pose-invariant face representation by an enco-
der and directly normalizes faces by a decoder without pose codes.
Zhu et al. [66,67] selected canonical-view images according to the
face images’ symmetry and sharpness and then adopted an autoen-
coder to recover the frontal view images by minimizing the recon-
struction loss error. The proposed stacked progressive
autoencoders (SPAE) [63] progressively map the nonfrontal face
to the frontal face through a stack of several autoencoders. Each
shallow autoencoders of SPAE is designed to convert the input face
images at large poses to a virtual view at a smaller pose, so the
pose variations are narrowed down gradually layer by layer along
the pose manifold. Zhang et al. [64] built a sparse many-to-one
encoder to enhance the discriminant of the pose free feature by
using multiple random faces as the target values for multiple
encoders.

CNN model. CNN models usually directly learn the 2D map-
pings between non-frontal face images and frontal images, and uti-
lize these mapping to normalize images in pixel space. The pixels
in normalized images are either directly the pixels or the combina-
tions of the pixels in non-frontal images. In LDF-Net [68], the dis-
placement field network learns the shifting relationship of two
pixels, and the translation layer transforms the input non-frontal
face image into a frontal one with this displacement field. In Grid-
Face [69] shown in Fig. 15, first, the rectification network normal-
izes the images by warping pixels from the original image to the
canonical one according to the computed homography matrix,
then the normalized output is regularized by an implicit canonical
view face prior, finally, with the normalized faces as input, the
recognition network learns discriminative face representation via
metric learning.

GAN model. Huang et al. [70] proposed a two-pathway genera-
tive adversarial network (TP-GAN) that contains four landmark-
located patch networks and a global encoder-decoder network.
Fig. 15. (a) System overview and (b) local homography transformation of GridFace [69]. T
image to the canonical one according to the computed homography matrix.
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Through combining adversarial loss, symmetry loss and identity-
preserving loss, TP-GAN generates a frontal view and simultane-
ously preserves global structures and local details as shown in
Fig. 16. In a disentangled representation learning generative adver-
sarial network (DR-GAN) [71], the generator serves as a face rota-
tor, in which an encoder produces an identity representation, and a
decoder synthesizes a face at the specified pose using this repre-
sentation and a pose code. And the discriminator is trained to
not only distinguish real vs. synthetic images, but also predict
the identity and pose of a face. Yin et al. [73] incorporated
3DMM into the GAN structure to provide shape and appearance
priors to guide the generator to frontalization.
5. Face databases and evaluation protocols

In the past three decades, many face databases have been con-
structed with a clear tendency from small-scale to large-scale,
from single-source to diverse-sources, and from lab-controlled to
real-world unconstrained condition, as shown in Fig. 17. As the
performance of some simple databases become saturated, e.g.
LFW [23], more and more complex databases were continually
developed to facilitate the FR research. It can be said without exag-
geration that the development process of the face databases largely
leads the direction of FR research. In this section, we review the
development of major training and testing academic databases
for the deep FR.
5.1. Large-scale training data sets

The prerequisite of effective deep FR is a sufficiently large train-
ing dataset. Zhou et al. [59] suggested that large amounts of data
with deep learning improve the performance of FR. The results of
Megaface Challenge also revealed that premier deep FR methods
he rectification network normalizes the images by warping pixels from the original



Fig. 16. General framework of TP-GAN [70]. The generator contains two pathways with each processing global or local transformations. The discriminator distinguishes
between synthesized frontal views and ground-truth frontal views.

Fig. 17. The evolution of FR datasets. Before 2007, early works in FR focused on controlled and small-scale datasets. In 2007, LFW [23] dataset was introduced which marks
the beginning of FR under unconstrained conditions. Since then, more testing databases designed for different tasks and scenes are constructed. And in 2014, CASIA-Webface
[120] provided the first widely-used public training dataset, large-scale training datasets begun to be hot topic. Red rectangles represent training datasets, and other color
rectangles represent different testing datasets.
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were typically trained on data larger than 0.5 M images and 20 K
people. The early works of deep FR were usually trained on private
training datasets. Facebook’s Deepface [20] model was trained on
4 M images of 4 K people; Google’s FaceNet [38] was trained on
200 M images of 3 M people; DeepID serial models [34,35,21,36]
were trained on 0.2 M images of 10 K people. Although they
reported ground-breaking performance at this stage, researchers
cannot accurately reproduce or compare their models without
public training datasets.

To address this issue, CASIA-Webface [120] provided the first
widely-used public training dataset for the deep model training
purpose, which consists of 0.5 M images of 10 K celebrities col-
lected from the web. Given its moderate size and easy usage, it
has become a great resource for fair comparisons for academic
deep models. However, its relatively small data and ID size may
not be sufficient to reflect the power of many advanced deep learn-
ing methods. Currently, there have been more databases providing
public available large-scale training dataset (Table 6), especially
three databases with over 1 M images, namely MS-Celeb-1 M
[45], VGGface2 [39], and Megaface [44,164], and we summary
some interesting findings about these training sets, as shown in
Fig. 18.
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Depth v.s. breadth. These large training sets are expanded from
depth or breadth. VGGface2 provides a large-scale training dataset
of depth, which have limited number of subjects but many images
for each subjects. The depth of dataset enforces the trained model
to address a wide range intra-class variations, such as lighting, age,
and pose. In contrast, MS-Celeb-1 M and Mageface (Challenge 2)
offers large-scale training datasets of breadth, which contains
many subject but limited images for each subjects. The breadth
of dataset ensures the trained model to cover the sufficiently vari-
able appearance of various people. Cao et al. [39] conducted a sys-
tematic studies on model training using VGGface2 and MS-Celeb-
1 M, and found an optimal model by first training on MS-Celeb-
1 M (breadth) and then fine-tuning on VGGface2 (depth).

Long tail distribution. The utilization of long tail distribution is
different among datasets. For example, in Challenge 2 of MS-Celeb-
1 M, the novel set specially uses the tailed data to study low-shot
learning; central part of the long tail distribution is used by the
Challenge 1 of MS-Celeb-1 M and images’ number is approximately
limited to 100 for each celebrity; VGGface and VGGface2 only use
the head part to construct deep databases; Megaface utilizes the
whole distribution to contain as many images as possible, the min-
imal number of images is 3 per person and the maximum is 2469.



Table 6
The commonly used FR datasets for training

Datasets Publish
Time

#photos #subjects # of photos per
subject 1

Key Features

MS-Celeb-1 M (Challenge
1)[45]

2016 10 M 3.8 M(clean) 100,000 85 K(clean) 100 breadth; central part of long tail; celebrity;
knowledge base

MS-Celeb-1 M (Challenge
2)[45]

2016 1.5 M(base set) 1 K
(novel set)

20 K(base set) 1 K(novel
set)

1/-/100 low-shot learning; tailed data; celebrity

MS-Celeb-1 M (Challenge
3) [163]

2018 4 M(MSv1c) 2.8 M
(Asian-Celeb)

80 K(MSv1c) 100 K
(Asian-Celeb)

- breadth;central part of long tail; celebrity

MegaFace [44,164] 2016 4.7 M 672,057 3/7/2469 breadth; the whole long tail;commonalty
VGGFace2 [39] 2017 3.31 M 9,131 87/362.6/843 depth; head part of long tail; cross pose, age and

ethnicity; celebrity
CASIA WebFace [120] 2014 494,414 10,575 2/46.8/804 celebrity
MillionCelebs [165] 2020 18.8 M 636 K 29.5 celebrity
IMDB-Face [124] 2018 1.7 M 59 K 28.8 celebrity

UMDFaces-Videos [166] 2017 22,075 3,107 – video
VGGFace [37] 2015 2.6 M 2,622 1,000 depth; celebrity; annotation with bounding

boxesand coarse pose
CelebFaces+ [21] 2014 202,599 10,177 19.9 private

Google [38] 2015 >500 M >10 M 50 private
Facebook [20] 2014 4.4 M 4 K 800/1100/1200 private

The min/average/max numbers of photos or frames per subject.

Fig. 18. The distribution of three new large-scale databases suitable for training deep models. They have larger scale than the widely-used CAISA-Web database. The vertical
axis displays number of images per person, and the horizontal axis shows person IDs.

Fig. 19. A visualization of the size and estimated noise percentage of datasets.
[124].
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Data engineering. Several popular benchmarks, such as LFW
unrestricted protocol, Megaface Challenge 1, MS-Celeb-1 M Chal-
lenge 1&2, explicitly encourage researchers to collect and clean a
large-scale data set for enhancing the capability of deep neural net-
work. Although data engineering is a valuable problem to com-
puter vision researchers, this protocol is more incline to the
industry participants. As evidence, the leaderboards of these exper-
iments are mostly occupied by the companies holding invincible
hardwares and data scales. This phenomenonmay not be beneficial
for developments of new models in academic community.

Data noise. Owing to data source and collecting strategies,
existing large-scale datasets invariably contain label noises. Wang
et al. [124] profiled the noise distribution in existing datasets in
Fig. 19 and showed that the noise percentage increases dramati-
cally along the scale of data. Moreover, they found that noise is
more lethal on a 10,000-class problem of FR than on a 10-class
problem of object classification and that label flip noise severely
deteriorates the performance of a model, especially the model
using A-softmax [84]. Therefore, building a sufficiently large and
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clean dataset for academic research is very meaningful. Deng
et al. [106] found there are serious label noise in MS-Celeb-1 M
[45], and they cleaned the noise of MS-Celeb-1 M, and made the
refined dataset public available. Microsoft and Deepglint jointly
released the largest public data set [163] with cleaned labels,
which includes 4 M images cleaned from MS-Celeb-1 M dataset



M. Wang and W. Deng Neurocomputing 429 (2021) 215–244
and 2.8 M aligned images of 100 K Asian celebrities. Moreover,
Zhan et al. [167] shifted the focus from cleaning the datasets to
leveraging more unlabeled data. Through automatically assigning
pseudo labels to unlabeled data with the help of relational graphs,
they obtained competitive or even better results over the fully-
supervised counterpart.

Data bias. Large-scale training datasets, such as CASIA-
WebFace [120], VGGFace2 [39] and MS-Celeb-1 M [45], are typi-
cally constructed by scraping websites like Google Images, and
consist of celebrities on formal occasions: smiling, make-up,
young, and beautiful. They are largely different from databases
captured in the daily life (e.g. Megaface). The biases can be attrib-
uted to many exogenous factors in data collection, such as cam-
eras, lightings, preferences over certain types of backgrounds, or
annotator tendencies. Dataset biases adversely affect cross-
dataset generalization; that is, the performance of the model
trained on one dataset drops significantly when applied to another
one. One persuasive evidence is presented by P.J. Phillips’ study
[168] which conducted a cross benchmark assessment of VGGFace
model [37] for face recognition. The VGGFace model achieves
98.95% on LFW [23] and 97.30% on YTF [169], but only obtains
26%, 52% and 85% on Ugly, Bad and Good partition of GBU database
[170].

Demographic bias (e.g., race/ethnicity, gender, age) in datasets
is a universal but urgent issue to be solved in data bias field. In
existing training and testing datasets, the male, White, and
middle-aged cohorts always appear more frequently, as shown in
Table 7, which inevitably causes deep learning models to replicate
and even amplify these biases resulting in significantly different
accuracies when deep models are applied to different demographic
groups. Some researches [145,171,172] showed that the female,
Black, and younger cohorts are usually more difficult to recognize
in FR systems trained with commonly-used datasets. For example,
Wang et al. [173] proposed a Racial Faces in-the-Wild (RFW) data-
base and proved that existing commercial APIs and the SOTA algo-
rithms indeed work unequally for different races and the
maximum difference in error rate between the best and worst
groups is 12%, as shown in Table 8. Hupont et al. [171] showed that
SphereFace has a TAR of 0.87 for White males which drops to 0.28
for Asian females, at a FAR of 1e� 4. Such bias can result in
mistreatment of certain demographic groups, by either exposing
them to a higher risk of fraud, or by making access to services more
difficult. Therefore, addressing data bias and enhancing fairness of
FR systems in real life are urgent and necessary tasks. Collecting
balanced data to train a fair model or designing some debiasing
algorithms are effective way.

5.2. Training protocols

In terms of training protocol, FR can be categorized into subject-
dependent and subject-independent settings, as illustrated in
Fig. 20.

Subject-dependent protocol. For subject-dependent protocol,
all testing identities are predefined in training set, it is natural to
classify testing face images to the given identities. Therefore,
subject-dependent FR can be well addressed as a classification
problem, where features are expected to be separable. The protocol
is mostly adopted by the early-stage (before 2010) FR studies on
FERET [177], AR [178], and is suitable only for some small-scale
applications. The Challenge 2 of MS-Celeb-1 M is the only large-
scale database using subject-dependent training protocol.

Subject-independent protocol. For subject-independent pro-
tocol, the testing identities are usually disjoint from the training
set, which makes FR more challenging yet close to practice.
Because it is impossible to classify faces to known identities in
training set, generalized representation is essential. Due to the fact
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that human faces exhibit similar intra-subject variations, deep
models can display transcendental generalization ability when
training with a sufficiently large set of generic subjects, where
the key is to learn discriminative large-margin deep features. This
generalization ability makes subject-independent FR possible.
Almost all major face-recognition benchmarks, such as LFW [23],
PaSC [179], IJB-A/B/C [41–43] and Megaface [44,164], require the
tested models to be trained under subject-independent protocol.

5.3. Evaluation tasks and performance metrics

In order to evaluate whether our deep models can solve the dif-
ferent problems of FR in real life, many testing datasets are
designed to evaluate the models in different tasks, i.e. face verifica-
tion, close-set face identification and open-set face identification.
In either task, a set of known subjects is initially enrolled in the
system (the gallery), and during testing, a new subject (the probe)
is presented. Face verification computes one-to-one similarity
between the gallery and probe to determine whether the two
images are of the same subject, whereas face identification com-
putes one-to-many similarity to determine the specific identity
of a probe face. When the probe appears in the gallery identities,
this is referred to as closed-set identification; when the probes
include those who are not in the gallery, this is open-set
identification.

Face verification is relevant to access control systems, re-
identification, and application independent evaluations of FR algo-
rithms. It is classically measured using the receiver operating char-
acteristic (ROC) and estimated mean accuracy (Acc). At a given
threshold (the independent variable), ROC analysis measures the
true accept rate (TAR), which is the fraction of genuine compar-
isons that correctly exceed the threshold, and the false accept rate
(FAR), which is the fraction of impostor comparisons that incor-
rectly exceed the threshold. And Acc is a simplified metric intro-
duced by LFW [23], which represents the percentage of correct
classifications. With the development of deep FR, more accurate
recognitions are required. Customers concern more about the
TAR when FAR is kept in a very low rate in most security certifica-
tion scenario. PaSC [179] reports TAR at a FAR of 10�2; IJB-A [41]
evaluates TAR at a FAR of 10�3; Megaface [44,164] focuses on
TAR@10�6FAR; especially, in MS-celeb-1 M challenge 3 [163],
TAR@10�9FAR is reported.

Close-set face identification is relevant to user driven searches
(e.g., forensic identification), rank-N and cumulative match charac-
teristic (CMC) is commonly used metrics in this scenario. Rank-N is
based on what percentage of probe searches return the probe’s gal-
lery mate within the top k rank-ordered results. The CMC curve
reports the percentage of probes identified within a given rank
(the independent variable). IJB-A/B/C [41–43] concern on the
rank-1 and rank-5 recognition rate. The MegaFace challenge
[44,164] systematically evaluates rank-1 recognition rate function
of increasing number of gallery distractors (going from 10 to 1 Mil-
lion), the results of the SOTA evaluated on MegaFace challenge are
listed in Table 9. Rather than rank-N and CMC, MS-Celeb-1 M [45]
further applies a precision-coverage curve to measure identifica-
tion performance under a variable threshold t. The probe is
rejected when its confidence score is lower than t. The algorithms
are compared in term of what fraction of passed probes, i.e. cover-
age, with a high recognition precision, e.g. 95% or 99%, the results
of the SOTA evaluated on MS-Celeb-1 M challenge are listed in
Table 10.

Open-set face identification is relevant to high throughput
face search systems (e.g., de-duplication, watch list identification),
where the recognition system should reject unknown/unseen sub-
jects (probes who do not present in gallery) at test time. At present,



Table 7
Statistical demographic information of commonly-used training and testing databases. [173,171]

Train/ Database Race (%) Gender (%)

Test Caucasian Asian Indian African Female Male

train CASIA-WebFace [120] 84.5 2.6 1.6 11.3 41.1 58.9
VGGFace2 [39] 74.2 6.0 4.0 15.8 40.7 59.3

MS-Celeb-1 M [45] 76.3 6.6 2.6 14.5 - -
test LFW [23] 69.9 13.2 2.9 14.0 25.8 74.2

IJB-A [41] 66.0 9.8 7.2 17.0 - -

Table 8
Racial bias in existing commercial recognition APIs and face recognition algorithms. Face verification accuracies (%) on RFW database are given [173].

Model LFW RFW

Caucasian Indian Asian African

Microsoft 98.22 87.60 82.83 79.67 75.83
Face++ 97.03 93.90 88.55 92.47 87.50
Baidu 98.67 89.13 86.53 90.27 77.97

Amazon 98.50 90.45 87.20 84.87 86.27
mean 98.11 90.27 86.28 86.82 81.89

Center-loss [101] 98.75 87.18 81.92 79.32 78.00
Sphereface [84] 99.27 90.80 87.02 82.95 82.28
Arcface [106] 99.40 92.15 88.00 83.98 84.93
VGGface2 [39] 99.30 89.90 86.13 84.93 83.38

mean 99.18 90.01 85.77 82.80 82.15

Fig. 20. The comparison of different training protocol and evaluation tasks in FR. In terms of training protocol, FR can be classified into subject-dependent or subject-
independent settings according to whether testing identities appear in training set. In terms of testing tasks, FR can be classified into face verification, close-set face
identification, open-set face identification.

Table 9
Performance of state of the arts on Megaface dataset.

Method Megaface challenge1 Method Megaface challenge2

FaceScrub FGNet FaceScrub FGNet

Rank1

@106

TPR

@10�6FPR

Rank1

@106

TPR

@10�6FPR

Rank1

@106

TPR

@10�6FPR

Rank1

@106

TPR

@10�6FPR

Arcface [106] 0.9836 0.9848 - - Cosface
[105]

0.7707 0.9030 0.6118 0.6350

Cosface [105] 0.9833 0.9841 - -
A-softmax [84] 0.9743 0.9766 - -

Marginal loss [116] 0.8028 0.9264 0.6643 0.4370
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there are very few databases covering the task of open-set FR. IJB-
A/B/C [41–43] benchmarks introduce a decision error tradeoff
(DET) curve to characterize the false negative identification rate
(FNIR) as function of the false positive identification rate (FPIR).
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FPIR measures what fraction of comparisons between probe tem-
plates and non-mate gallery templates result in a match score
exceeding T. At the same time, FNIR measures what fraction of
probe searches will fail to match a mated gallery template above



Table 10
Performance of state of the arts on MS-celeb-1 M dataset.

Method MS-celeb-1 M challenge1 Method MS-celeb-1 M challenge2

External
Data

C@P = 0.95 random
set

C@P = 0.95 hard
set

External
Data

Top 1 Accuracy base
set

C@P = 0.99 novel
set

MCSM [174] w 0.8750 0.7910 Cheng et al. [137] w 0.9974 0.9901
Wang et al.

[175]
w/o 0.7500 0.6060 Ding et al. [142] w/o - 0.9484

Hybrid Classifiers
[176]

w/o 0.9959 0.9264

UP loss [143] w/o 0.9980 0.7748

Table 11
Face Identification and Verification Evaluation of state of the arts on IJB-A dataset

Method IJB-A Verification (TAR@FAR) IJB-A Identification

0.001 0.01 0.1 FPIR = 0.01 FPIR = 0.1 Rank = 1 Rank = 10

TDFF [146] 0.979 ± 0.004 0.991 ± 0.002 0.996 ± 0.001 0.946 ± 0.047 0.987 ± 0.003 0.992 ± 0.001 0.998 ± 0.001
L2-softmax [109] 0.943 ± 0.005 0.970 ± 0.004 0.984 ± 0.002 0.915 ± 0.041 0.956 ± 0.006 0.973 ± 0.005 0.988 ± 0.003
DA-GAN [56] 0.930 ± 0.005 0.976 ± 0.007 0.991 ± 0.003 0.890 ± 0.039 0.949 ± 0.009 0.971 ± 0.007 0.989 ± 0.003
VGGface2 [39] 0.921 ± 0.014 0.968 ± 0.006 0.990 ± 0.002 0.883 ± 0.038 0.946 ± 0.004 0.982 ± 0.004 0.994 ± 0.001
TDFF [146] 0.919 ± 0.006 0.961 ± 0.007 0.988 ± 0.003 0.878 ± 0.035 0.941 ± 0.010 0.964 ± 0.006 0.992 ± 0.002
NAN [83] 0.881 ± 0.011 0.941 ± 0.008 0.979 ± 0.004 0.817 ± 0.041 0.917 ± 0.009 0.958 ± 0.005 0.986 ± 0.003

All-In-One Face [100] 0.823 ± 0.020 0.922 ± 0.010 0.976 ± 0.004 0.792 ± 0.020 0.887 ± 0.014 0.947 ± 0.008 0.988 ± 0.003
Template Adaptation [121] 0.836 ± 0.027 0.939 ± 0.013 0.979 ± 0.004 0.774 ± 0.049 0.882 ± 0.016 0.928 ± 0.010 0.986 ± 0.003

TPE [81] 0.813 ± 0.020 0.900 ± 0.010 0.964 ± 0.005 0.753 ± 0.030 0.863 ± 0.014 0.932 ± 0.010 0.977 ± 0.005
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a score of T. The algorithms are compared in term of the FNIR at a
low FPIR, e.g. 1% or 10%, the results of the SOTA evaluated on IJB-A
dataset as listed in Table 11.

5.4. Evaluation scenes and data

Public available training databases are mostly collected from
the photos of celebrities due to privacy issue, it is far from images
captured in the daily life with diverse scenes. In order to study dif-
ferent specific scenarios, more difficult and realistic datasets are
constructed accordingly, as shown in Table 12. According to their
characteristics, we divide these scenes into four categories:
cross-factor FR, heterogenous FR, multiple (or single) media FR
and FR in industry (Fig. 21).

� Cross-factor FR. Due to the complex nonlinear facial appear-
ance, some variations will be caused by people themselves, such
as cross-pose, cross-age, make-up, and disguise. For example,
CALFW [188], MORPH [189], CACD [191] and FG-NET [194]
are commonly used datasets with different age range; CFP
[182] only focuses on frontal and profile face, CPLFW [181] is
extended from LFW and contains different poses. Disguised
faces in the wild (DFW) [214] evaluates face recognition across
disguise.

� Heterogenous FR. It refers to the problem of matching faces
across different visual domains. The domain gap is mainly
caused by sensory devices and cameras settings, e.g. visual light
vs. near-infrared and photo vs. sketch. For example, CUFSF [201]
and CUFS [199] are commonly used photo-sketch datasets and
CUFSF dataset is harder due to lighting variation and shape
exaggeration.

� Multiple (or single) media FR. Ideally, in FR, many images of
each subject are provided in training datasets and image-to-
image recognitions are performed when testing. But the situa-
tion will be different in reality. Sometimes, the number of
images per person in training set could be very small, such as
MS-Celeb-1 M challenge 2 [45]. This challenge is often called
low- shot or few-shot FR. Moreover, each subject face in test
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set may be enrolled with a set of images and videos and set-
to-set recognition should be performed, such as IJB-A [41] and
PaSC [179].

� FR in industry. Although deep FR has achieved beyond human
performance on some standard benchmarks, but some other
factors should be given more attention rather than accuracy
when deep FR is adopted in industry, e.g. anti-attack (CASIA-
FASD [210]) and 3D FR (Bosphorus [203], BU-3DFE [205] and
FRGCv2[206]). Compared to publicly available 2D face data-
bases, 3D scans are hard to acquire, and the number of scans
and subjects in public 3D face databases is still limited, which
hinders the development of 3D deep FR.

6. Diverse recognition scenes of deep learning

Despite the high accuracy in the LFW [23] and Megaface
[44,164] benchmarks, the performance of FR models still hardly
meets the requirements in real-world application. A conjecture in
industry is made that results of generic deep models can be
improved simply by collecting big datasets of the target scene.
However, this holds only to a certain degree. More and more con-
cerns on privacy may make the collection and human-annotation
of face data become illegal in the future. Therefore, significant
efforts have been paid to design excellent algorithms to address
the specific problems with limited data in these realistic scenes.
In this section, we present several special algorithms of FR.

6.1. Cross-factor face recognition

6.1.1. Cross-pose face recognition
As [182] shows that many existing algorithms suffer a decrease

of over 10% from frontal-frontal to frontal-profile verification,
cross-pose FR is still an extremely challenging scene. In addition
to the aforementioned methods, including ‘‘one-to-many augmen-
tation”, ‘‘many-to-one normalization” and assembled networks
(Section 4 and 3.2.2), there are some other algorithms designed
for cross-pose FR. Considering the extra burden of above methods,
Cao et al. [215] attempted to perform frontalization in the deep



Table 12
The commonly used FR datasets for testing.

Datasets Publish
Time

#photos #subjects # of
photos
per

subject 1

Metrics Typical Methods & Accuracy 2 Key Features (Section)

LFW [23] 2007 13 K 5 K 1/2.3/530 1:1: Acc, TAR vs. FAR
(ROC); 1:N: Rank-N, DIR

vs. FAR (CMC)

99.78% Acc [109]; 99.63% Acc [38] annotation with several
attribute

MS-Celeb-1 M
Challenge 1

[45]

2016 2 K 1 K 2 Coverage@P = 0.95 random set: 87.50%@P = 0.95; hard set:
79.10%@P = 0.95 [174];

large-scale

MS-Celeb-1 M
Challenge 2

[45]

2016 100 K(base
set) 0 K

(novel set)

20 K(base
set) 1 K

(novel set)

5/-/20 Coverage@P = 0.99 99.01%@P = 0.99 [137] low-shot learning (6.3.1)

MS-Celeb-1 M
Challenge 3

[163]

2018 274 K
(ELFW) 1 M
(DELFW)

5.7 K
(ELFW)
1.58 M
(DELFW)

- 1:1: TPR@FPR = 1e�9; 1:
N: TPR@FPR = 1e�3

1:1: 46.15% [106]; 1:N: 43.88% [106] trillion pairs; large
distractors

MegaFace
[44,164]

2016 1 M 690,572 1.4 1:1: TPR vs. FPR (ROC);
1:N: Rank-N (CMC)

1:1: 86.47%@10�6FPR [38]; 1:N:
70.50% Rank-1 [38]

large-scale; 1 million
distractors

IJB-A [41] 2015 25,809 500 51.6 1:1: TAR vs. FAR (ROC);
1:N: Rank-N, TPIR vs.

FPIR (CMC, DET)

1:1: 92.10%@10�3FAR [39]; 1:N:
98.20% Rank-1 [39]

cross-pose; template-
based (6.1.1 and 6.3.2)

IJB-B [42] 2017 11,754
images
7,011
videos

1,845 41.6 1:1: TAR vs. FAR (ROC);
1:N: Rank-N, TPIR vs.

FPIR (CMC, DET)

1:1: 52.12%@10�6FAR [180]; 1:N:
90.20% Rank-1 [39]

cross-pose; template-
based (6.1.1 and 6.3.2)

IJB-C [43] 2018 31.3 K
images
11,779
videos

3,531 42.1 1:1: TAR vs. FAR (ROC);
1:N: Rank-N, TPIR vs.

FPIR (CMC, DET)

1:1: 90.53%@10�6FAR [180]; 1:N:
74.5% Rank-1 [71]

cross-pose; template-
based (6.1.1 and 6.3.2)

RFW [173] 2018 40607 11429 3.6 1:1: Acc, TAR vs. FAR
(ROC)

Caucasian: 92.15% Acc; Indian: 88.00%
Acc; Asian: 83.98% Acc; African:

84.93% Acc [84]

evaluating race bias

DemogPairs
[171]

2019 10.8 K 800 18 1:1: TAR vs. FAR (ROC) White male: 88%; White female: 87%

@10�4FAR; Black male: 55%; Black

female: 65%@10�4FAR [84]

evaluating race and
gender bias

CPLFW [181] 2017 11652 3968 2/2.9/3 1:1: Acc, TAR vs. FAR
(ROC)

77.90% Acc [37] cross-pose (6.1.1)

CFP [182] 2016 7,000 500 14 1:1: Acc, EER, AUC, TAR
vs. FAR (ROC)

Frontal-Frontal: 98.67% Acc [135];
Frontal-Profile: 94:39% Acc [97]

frontal-profile (6.1.1)

SLLFW [183] 2017 13 K 5 K 2.3 1:1: Acc, TAR vs. FAR
(ROC)

85.78% Acc [37]; 78.78% Acc [20] fine-grained

UMDFaces
[184]

2016 367,920 8,501 43.3 1:1: Acc, TPR vs. FPR
(ROC)

69.30%@10�2FAR [22] annotation with bounding
boxes, 21 keypoints,
gender and 3D pose

YTF [169] 2011 3,425 1,595 48/181.3/
6,070

1:1: Acc 97.30% Acc [37]; 96.52% Acc [185] video (6.3.3)

PaSC [179] 2013 2,802 265 – 1:1: VR vs. FAR (ROC) 95.67%@10�2FAR [185] video (6.3.3)

YTC [186] 2008 1,910 47 – 1:N: Rank-N (CMC) 97.82% Rank-1 [185]; 97.32% Rank-1
[187]

video (6.3.3)

CALFW [188] 2017 12174 4025 2/3/4 1:1: Acc, TAR vs. FAR
(ROC)

86.50% Acc [37]; 82.52% Acc [114] cross-age; 12 to 81 years
old (6.1.2)

MORPH [189] 2006 55,134 13,618 4.1 1:N: Rank-N (CMC) 94.4% Rank-1 [190] cross-age, 16 to 77 years
old (6.1.2)

CACD [191] 2014 163,446 2000 81.7 1:1 (CACD-VS): Acc, TAR
vs. FAR (ROC); 1:N: MAP

1:1 (CACD-VS): 98.50% Acc [192]; 1:N:
69.96% MAP (2004–2006)[193]

cross-age, 14 to 62 years
old (6.1.2)

FG-NET [194] 2010 1,002 82 12.2 1:N: Rank-N (CMC) 88.1% Rank-1 [192] cross-age, 0 to 69 years old
(6.1.2)

CASIA NIR-VIS
v2.0 [195]

2013 17,580 725 24.2 1:1: Acc, VR vs. FAR
(ROC)

98.62% Acc, 98.32%@10�3FAR [196] NIR-VIS; with eyeglasses,
pose and expression
variation (6.2.1)

CASIA-HFB
[197]

2009 5097 202 25.5 1:1: Acc, VR vs. FAR
(ROC)

97.58% Acc, 85.00%@10�3FAR [198] NIR-VIS; with eyeglasses
and expression variation
(6.2.1)

CUFS [199] 2009 1,212 606 2 1:N: Rank-N (CMC) 100% Rank-1 [200] sketch-photo (6.2.3)
CUFSF [201] 2011 2,388 1,194 2 1:N: Rank-N (CMC) 51.00% Rank-1 [202] sketch-photo; lighting

variation; shape
exaggeration (6.2.3)

Bosphorus
[203]

2008 4,652 105 31/44.3/
54

1:1: TAR vs. FAR (ROC);
1:N: Rank-N (CMC)

1:N: 99.20% Rank-1 [204] 3D; 34 expressions, 4
occlusions and different
poses (6.4.1)

BU-3DFE [205] 2006 2,500 100 25 1:1: TAR vs. FAR (ROC);
1:N: Rank-N (CMC)

1:N: 95.00% Rank-1 [204] 3D; different expressions
(6.4.1)

FRGCv2 [206] 2005 4,007 466 1/8.6/22 1:1: TAR vs. FAR (ROC);
1:N: Rank-N (CMC)

1:N: 94.80% Rank-1 [204] 3D; different expressions
(6.4.1)

(continued on next page)
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Table 12 (continued)

Datasets Publish
Time

#photos #subjects # of
photos
per

subject 1

Metrics Typical Methods & Accuracy 2 Key Features (Section)

Guo et al. [207] 2014 1,002 501 2 1:1: Acc, TAR vs. FAR
(ROC)

94.8% Rank-1, 65.9%@10�3FAR [208] make-up; female (6.1.3)

FAM [209] 2013 1,038 519 2 1:1: Acc, TAR vs. FAR
(ROC)

88.1% Rank-1, 52.6%@10�3FAR [208] make-up; female and male
(6.1.3)

CASIA-FASD
[210]

2012 600 50 12 EER, HTER 2.67% EER, 2.27% HTER [211] anti-spoofing (6.4.4)

Replay-Attack
[212]

2012 1,300 50 – EER, HTER 0.79% EER, 0.72% HTER [211] anti-spoofing (6.4.4)

WebCaricature
[213]

2017 12,016 252 – 1:1: TAR vs. FAR (ROC);
1:N: Rank-N (CMC)

1:1: 34.94%@10�1FAR [213]; 1:N:
55.41% Rank-1 [213]

Caricature (6.2.3)

The min/average/max numbers of photos or frames per subject.
We only present the typical methods that are published in a paper, and the accuracies of the most challenging scenarios are given.

Fig. 21. The different scenes of FR. We divide FR scenes into four categories: cross-factor FR, heterogenous FR, multiple (or single) media FR and FR in industry. There are
many testing datasets and special FR methods designed for each scene.

M. Wang and W. Deng Neurocomputing 429 (2021) 215–244
feature space rather than the image space. A deep residual equiv-
ariant mapping (DREAM) block dynamically added residuals to
an input representation to transform a profile face to a frontal
image. Chen et al. [216] proposed to combine feature extraction
with multi-view subspace learning to simultaneously make fea-
tures be more pose-robust and discriminative. Pose Invariant
Model (PIM) [217] jointly performed face frontalization and
learned pose invariant representations end-to-end to allow them
to mutually boost each other, and further introduced unsupervised
cross-domain adversarial training and a learning to learn strategy
to provide high-fidelity frontal reference face images.
6.1.2. Cross-age face recognition
Cross-age FR is extremely challenging due to the changes in

facial appearance by the aging process over time. One direct
approach is to synthesize the desired image with target age such
that the recognition can be performed in the same age group. A
generative probabilistic model was used by [218] to model the
facial aging process at each short-term stage. The identity-
preserved conditional generative adversarial networks (IPCGANs)
[219] framework utilized a conditional-GAN to generate a face in
which an identity-preserved module preserved the identity infor-
mation and an age classifier forced the generated face with the tar-
get age. Antipov et al. [220] proposed to age faces by GAN, but the
synthetic faces cannot be directly used for face verification due to
its imperfect preservation of identities. Then, they used a local
manifold adaptation (LMA) approach [221] to solve the problem
of [220]. In [222], high-level age-specific features conveyed by
the synthesized face are estimated by a pyramidal adversarial dis-
criminator at multiple scales to generate more lifelike facial details.
An alternative to address the cross-age problem is to decompose
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aging and identity components separately and extract age-
invariant representations. Wen et al. [192] developed a latent iden-
tity analysis (LIA) layer to separate these two components, as
shown in Fig. 22. In [193], age-invariant features were obtained
by subtracting age-specific factors from the representations with
the help of the age estimation task. In [124], face features are
decomposed in the spherical coordinate system, in which the
identity-related components are represented with angular coordi-
nates and the age-related information is encoded with radial coor-
dinate. Additionally, there are other methods designed for cross-
age FR. For example, Bianco ett al. [223] and El et al. [224] fine-
tuned the CNN to transfer knowledge across age. Wang et al.
[225] proposed a siamese deep network to perform multi-task
learning of FR and age estimation. Li et al. [226] integrated feature
extraction and metric learning via a deep CNN.
6.1.3. Makeup face recognition
Makeup is widely used by the public today, but it also brings

challenges for FR due to significant facial appearance changes.
The research on matching makeup and nonmakeup face images
is receiving increasing attention. Li et al. [208] generated non-
makeup images from makeup ones by a bi-level adversarial net-
work (BLAN) and then used the synthesized nonmakeup images
for verification as shown in Fig. 23. Sun et al. [227] pretrained a tri-
plet network on videos and fine-tuned it on a small makeup data-
sets. Specially, facial disguise [214,228,229] is a challenging
research topic in makeup face recognition. By using disguise acces-
sories such as wigs, beard, hats, mustache, and heavy makeup, dis-
guise introduces two variations: (i) when a person wants to
obfuscate his/her own identity, and (ii) another individual imper-
sonates someone else’s identity. Obfuscation increases intra-class



Fig. 22. The architecture of the cross-age FR with LIA. [192].

Fig. 23. The architecture of BLAN. [208].
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variations whereas impersonation reduces the inter-class dissimi-
larity, thereby affecting face recognition/verification task. To
address this issue, a variety of methods are proposed. Zhang
et al. [230] first trained two DCNNs for generic face recognition
and then used Principal Components Analysis (PCA) to find the
transformation matrix for disguised face recognition adaptation.
Kohli et al. [231] finetuned models using disguised faces. Smirnov
et al. [232] proposed a hard example mining method benefitted
from class-wise (Doppelganger Mining [233]) and example-wise
mining to learn useful deep embeddings for disguised face recogni-
tion. Suri et al. [234] learned the representations of images in
terms of colors, shapes, and textures (COST) using an unsupervised
dictionary learning method, and utilized the combination of COST
features and CNN features to perform recognition.

6.2. Heterogenous face recognition

.

6.2.1. NIR-VIS face recognition
Due to the excellent performance of the near-infrared spectrum

(NIS) images under low-light scenarios, NIS images are widely
applied in surveillance systems. Because most enrolled databases
consist of visible light (VIS) spectrum images, how to recognize a
NIR face from a gallery of VIS images has been a hot topic. Saxena
et al. [235] and Liu et al. [236] transferred the VIS deep networks to
the NIR domain by fine-tuning. Lezama et al. [237] used a VIS CNN
to recognize NIR faces by transforming NIR images to VIS faces
235
through cross-spectral hallucination and restoring a low-rank
structure for features through low-rank embedding. Reale et al.
[198] trained a VISNet (for visible images) and a NIRNet (for
near-infrared images), and coupled their output features by creat-
ing a siamese network. He et al. [238,239] divided the high layer of
the network into a NIR layer, a VIS layer and a NIR-VIS shared layer,
then, a modality-invariant feature can be learned by the NIR-VIS
shared layer. Song et al. [240] embedded cross-spectral face hallu-
cination and discriminative feature learning into an end-to-end
adversarial network. In [196], the low-rank relevance and cross-
modal ranking were used to alleviate the semantic gap.

6.2.2. Low-resolution face recognition
Although deep networks are robust to low resolution to a great

extent, there are still a few studies focused on promoting the per-
formance of low-resolution FR. For example, Zangeneh et al. [241]
proposed a CNN with a two-branch architecture (a super-
resolution network and a feature extraction network) to map the
high- and low-resolution face images into a common space where
the intra-person distance is smaller than the inter-person distance.
Shen et al. [242] exploited the face semantic information and local
structural constraints to better restore the shape and detail of face
images. In addition, they optimized the network with perceptual
and adversarial losses to produce photo-realistic results.

6.2.3. Photo-sketch face recognition
The photo-sketch FR may help law enforcement to quickly iden-

tify suspects. The commonly used methods can be categorized as
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two classes. One is to utilize transfer learning to directly match
photos to sketches. Deep networks are first trained using a large
face database of photos and are then fine-tuned using small sketch
database [243,244]. The other is to use the image-to-image trans-
lation, where the photo can be transformed to a sketch or the
sketch to a photo; then, FR can be performed in one domain. Zhang
et al. [200] developed a fully convolutional network with genera-
tive loss and a discriminative regularizer to transform photos to
sketches. Zhang et al. [245] utilized a branched fully convolutional
neural network (BFCN) to generate a structure-preserved sketch
and a texture-preserved sketch, and then they fused them together
via a probabilistic method. Recently, GANs have achieved impres-
sive results in image generation. Yi et al. [246], Kim et al. [247]
and Zhu et al. [248] used two generators, GA and GB, to generate
sketches from photos and photos from sketches, respectively
(Fig. 24). Based on [248], Wang et al. [202] proposed a multi-
adversarial network to avoid artifacts by leveraging the implicit
presence of feature maps of different resolutions in the generator
subnetwork. Similar to photo-sketch FR, photo-caricature FR is
one kind of heterogenous FR scenes which is challenging and
important to understanding of face perception. Huo et al. [213]
built a large dataset of caricatures and photos, and provided sev-
eral evaluation protocols and their baseline performances for
comparison.

6.3. Multiple (or single) media face recognition

6.3.1. Low-shot face recognition
For many practical applications, such as surveillance and secu-

rity, the FR system should recognize persons with a very limited
number of training samples or even with only one sample. The
methods of low-shot learning can be categorized as 1) synthesizing
training data and 2) learning more powerful features. Hong et al.
[249] generated images in various poses using a 3D face model
and adopted deep domain adaptation to handle other variations,
such as blur, occlusion, and expression (Fig. 25). Choe et al. [250]
used data augmentation methods and a GAN for pose transition
and attribute boosting to increase the size of the training dataset.
Wu et al. [176] proposed a framework with hybrid classifiers using
a CNN and a nearest neighbor (NN) model. Guo et al. [143] made
the norms of the weight vectors of the one-shot classes and the
normal classes aligned to address the data imbalance problem.
Cheng et al. [137] proposed an enforced softmax that contains
optimal dropout, selective attenuation, L2 normalization and
model-level optimization. Yin et al. [251] augmented feature space
of low-shot classes by transferring the principal components from
regular to low-shot classes to encourage the variance of low-shot
classes to mimic that of regular classes.

6.3.2. Set/template-based face recognition
Different from traditional image-to-image recognition, set-to-

set recognition takes a set (heterogeneous contents containing
both images and videos) as the smallest unit of representation. This
kind of setting does reflect the real-world biometric scenarios,
thereby attracting a lot of attention. After learning face representa-
tions of media in each set, two strategies are generally adopted to
perform set-to-set matching. One is to use these representations to
perform pair-wise similarity comparison of two sets and aggregate
the results into a single and final score by max score pooling [96],
average score pooling [252] and its variations [253,254]. The other
strategy is feature pooling [96,103,81] which first aggregates face
representations into a single representation for each set and then
performs a comparison between two sets. In addition to the com-
monly used strategies, there are also some novel methods pro-
posed for set/template-based FR. For example, Hayat et al. [255]
proposed a deep heterogeneous feature fusion network to exploit
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the features’ complementary information generated by different
CNNs. Liu et al. [256] introduced the actor-critic reinforcement
learning for set-based FR. They casted the inner-set dependency
modeling to a Markov decision process in the latent space, and
trained a dependency-aware attention control agent to make
attention control for each image in each step.

6.3.3. Video face recognition
There are two key issues in video FR: one is to integrate the

information across different frames together to build a representa-
tion of the video face, and the other is to handle video frames with
severe blur, pose variations, and occlusions. For frame aggregation,
Yang et al. [83] proposed a neural aggregation network (NAN) in
which the aggregation module, consisting of two attention blocks
driven by a memory, produces a 128-dimensional vector represen-
tation (Fig. 26). Rao et al. [187] aggregated raw video frames
directly by combining the idea of metric learning and adversarial
learning. For dealing with bad frames, Rao et al. [185] discarded
the bad frames by treating this operation as a Markov decision pro-
cess and trained the attention model through a deep reinforcement
learning framework. Ding et al. [257] artificially blurred clear
images for training to learn blur-robust face representations. Par-
chami et al. [258] used a CNN to reconstruct a lower-quality video
into a high-quality face.

6.4. Face recognition in industry

6.4.1. 3D face recognition
3D FR has inherent advantages over 2D methods, but 3D deep

FR is not well developed due to the lack of large annotated 3D data.
To enlarge 3D training datasets, most works use the methods of
‘‘one-to-many augmentation” to synthesize 3D faces. However,
the effective methods for extracting deep features of 3D faces
remain to be explored. Kim et al. [204] fine-tuned a 2D CNN with
a small amount of 3D scans for 3D FR. Zulqarnain et al. [259] used
a three-channel (corresponding to depth, azimuth and elevation
angles of the normal vector) image as input and minimized the
average prediction log-loss. Zhang et al. [260] first selected 30 fea-
ture points from the Candide-3 face model to characterize faces,
then conducted the unsupervised pretraining of face depth data,
and finally performed the supervised fine-tuning.

6.4.2. Partial face recognition
Partial FR, in which only arbitrary-size face patches are pre-

sented, has become an emerging problem with increasing require-
ments of identification from CCTV cameras and embedded vision
systems in mobile devices, robots and smart home facilities. He
et al. [261] divided the aligned face image into several multi-
scale patches, and the dissimilarity between two partial face
images is calculated as the weighted L2 distance between corre-
sponding patches. Dynamic feature matching (DFM) [262] utilized
a sliding window of the same size as the probe feature maps to
decompose the gallery feature maps into several gallery sub-
feature maps, and the similarity-guided constraint imposed on
sparse representation classification (SRC) provides an alignment-
free matching.

6.4.3. Face recognition for mobile devices
With the emergence of mobile phones, tablets and augmented

reality, FR has been applied in mobile devices. Due to computa-
tional limitations, the recognition tasks in these devices need to
be carried out in a light but timely fashion. MobiFace [87] required
efficient memory and low cost operators by adopting fast down-
sampling and bottleneck residual block, and achieves 99.7% on
LFW database and 91.3% on Megaface database. Tadmor et al.
[263] proposed a multibatch method that first generates signatures



Fig. 24. The architecture of DualGAN. [246].

Fig. 25. The architecture of a single sample per person domain adaptation network (SSPP-DAN). [249].

Fig. 26. The FR framework of NAN. [83].
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for a minibatch of k face images and then constructs an unbiased

estimate of the full gradient by relying on all k2 � k pairs from
the minibatch. As mentioned in Section 3.2.1, light-weight deep
networks [126–129] perform excellently in the fundamental tasks
of image classification and deserve further attention in FR tasks.
Moreover, some well-known compressed networks such as Prun-
ing [264–266], BinaryNets [267–270], Mimic Networks [271,272],
also have potential to be introduced into FR.

6.4.4. Face anti-attack
With the success of FR techniques, various types of attacks, such

as face spoofing and adversarial perturbations, are becoming large
threats. Face spoofing involves presenting a fake face to the bio-
metric sensor using a printed photograph, worn mask, or even an
image displayed on another electronic device. In order to defense
this type of attack, several methods are proposed [211,273–279].
Atoum et al. [211] proposed a novel two-stream CNN in which
the local features discriminate the spoof patches that are indepen-
dent of the spatial face areas, and holistic depth maps ensure that
the input live sample has a face-like depth. Yang et al. [273] trained
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a CNN using both a single frame and multiple frames with five
scales as input, and using the live/spoof label as the output. Taken
the sequence of video frames as input, Xu et al. [274] applied LSTM
units on top of CNN to obtain end-to-end features to recognize
spoofing faces which leveraged the local and dense property from
convolution operation and learned the temporal structure using
LSTM units. Li et al. [275] and Patel et al. [276] fine-tuned their net-
works from a pretrained model by training sets of real and fake
images. Jourabloo et al. [277] proposed to inversely decompose a
spoof face into the live face and the spoof noise pattern. Adversarial
perturbation is the other type of attack which can be defined as the
addition of a minimal vector r such that with addition of this vector
into the input image x, i.e. xþ rð Þ, the deep learning models mis-
classifies the input while people will not. Recently, more and more
work has begun to focus on solving this perturbation of FR. Gos-
wami et al. [280] proposed to detect adversarial samples by char-
acterizing abnormal filter response behavior in the hidden layers
and increase the network’s robustness by removing the most prob-
lematic filters. Goel et al. [281] provided an open source imple-
mentation of adversarial detection and mitigation algorithms.
Despite of progresses of anti-attack algorithms, attack methods
are updated as well and remind us the need to further increase
security and robustness in FR systems, for example, Mai et al.
[282] proposed a neighborly de-convolutional neural network
(NbNet) to reconstruct a fake face using the stolen deep templates.
6.4.5. Debiasing face recognition
As described in Section 5.1, existing datasets are highly biased

in terms of the distribution of demographic cohorts, which may
dramatically impact the fairness of deep models. To address this
issue, there are some works that seek to introduce fairness into
face recognition and mitigate demographic bias, e,g. unbalanced-
training [283], attribute removal [284–286] and domain adapta-
tion [173,287,147]. 1) Unbalanced-training methods mitigate the
bias via model regularization, taking into consideration of the fair-
ness goal in the overall model objective function. For example, RL-
RBN [283] formulated the process of finding the optimal margins
for non-Caucasians as a Markov decision process and employed
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deep Q-learning to learn policies based on large margin loss. 2)
Attribute removal methods confound or remove demographic
information of faces to learn attribute-invariant representations.
For example, Alvi et al. [284] applied a confusion loss to make a
classifier fail to distinguish attributes of examples so that multiple
spurious variations are removed from the feature representation.
SensitiveNets [288] proposed to introduce sensitive information
into triplet loss. They minimized the sensitive information, while
maintaining distances between positive and negative embeddings.
3) Domain adaptation methods propose to investigate data bias
problem from a domain adaptation point of view and attempt to
design domain-invariant feature representations to mitigate bias
across domains. IMAN [173] simultaneously aligned global distri-
bution to decrease race gap at domain-level, and learned the dis-
criminative target representations at cluster level. Kan [147]
directly converted the Caucasian data to non-Caucasian domain
in the image space with the help of sparse reconstruction coeffi-
cients learnt in the common subspace.

7. Technical challenges

In this paper, we provide a comprehensive survey of deep FR
from both data and algorithm aspects. For algorithms, mainstream
and special network architectures are presented. Meanwhile, we
categorize loss functions into Euclidean-distance-based loss,
angular/cosine-margin-based loss and variable softmax loss. For
data, we summarize some commonly used datasets. Moreover,
the methods of face processing are introduced and categorized as
‘‘one-to-many augmentation” and ‘‘many-to-one normalization”.
Finally, the special scenes of deep FR, including video FR, 3D FR
and cross-age FR, are briefly introduced.

Taking advantage of big annotated data and revolutionary deep
learning techniques, deep FR has dramatically improved the SOTA
performance and fostered successful real-world applications. With
the practical and commercial use of this technology, many ideal
assumptions of academic research were broken, and more real-
world issues are emerging. To the best our knowledge, major tech-
nical challenges include the following aspects.

� Security issues. Presentation attack [289], adversarial attack
[280,281,290], template attack [291] and digital manipulation
attack [292,293] are developing to threaten the security of deep
face recognition systems. 1) Presentation attack with 3D sili-
cone mask, which exhibits skin-like appearance and facial
motion, challenges current anti-sproofing methods [294]. 2)
Although adversarial perturbation detection and mitigation
methods are recently proposed [280,281], the root cause of
adversarial vulnerability is unclear and thus new types of
adversarial attacks are still upgraded continuously [295,296].
3) The stolen deep feature template can be used to recover its
facial appearance, and how to generate cancelable template
without loss of accuracy is another important issue. 4) Digital
manipulation attack, made feasible by GANs, can generate
entirely or partially modified photorealistic faces by expression
swap, identity swap, attribute manipulation and entire face
synthesis, which remains a main challenge for the security of
deep FR.
� Privacy-preserving face recognition. With the leakage of bio-
logical data, privacy concerns are raising nowadays. Facial
images can predict not only demographic information such as
gender, age, or race, but even the genetic information [297].
Recently, the pioneer works such as Semi-Adversarial Networks
[298,299,285] have explored to generate a recognizable biomet-
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ric templates that can hidden some of the private information
presented in the facial images. Further research on the princi-
ples of visual cryptography, signal mixing and image perturba-
tion to protect users’ privacy on stored face templates are
essential for addressing public concern on privacy.
� Understanding deep face recognition. Deep face recognition
systems are now believed to surpass human performance in
most scenarios [300]. There are also some interesting attempts
to apply deep models to assist human operators for face verifi-
cation [183,300]. Despite this progress, many fundamental
questions are still open, such as what is the ‘‘identity capacity”
of a deep representation [301]? Why deep neural networks,
rather than humans, are easily fooled by adversarial samples?
While bigger and bigger training dataset by itself cannot solve
this problem, deeper understanding on these questions may
help us to build robust applications in real world. Recently, a
new benchmark called TALFW has been proposed to explore
this issue [93].
� Remaining challenges defined by non-saturated benchmark
datasets. Three current major datasets, namely, MegaFace
[44,164], MS-Celeb-1 M [45] and IJB-A/B/C [41–43], are corre-
sponding to large-scale FR with a very large number of candi-
dates, low/one-shot FR and large pose-variance FR which will
be the focus of research in the future. Although the SOTA algo-
rithms can be over 99.9 percent accurate on LFW [23] and
Megaface [44,164] databases, fundamental challenges such as
matching faces cross ages [181], poses [188], sensors, or styles
still remain. For both datasets and algorithms, it is necessary
to measure and address the racial/gender/age biases of deep
FR in future research.
� Ubiquitous face recognition across applications and scenes.
Deep face recognition has been successfully applied on many
user-cooperated applications, but the ubiquitous recognition
applications in everywhere are still an ambitious goal. In prac-
tice, it is difficult to collect and label sufficient samples for innu-
merable scenes in real world. One promising solution is to first
learn a general model and then transfer it to an application-
specific scene. While deep domain adaptation [145] has
recently been applied to reduce the algorithm bias on different
scenes [148], different races [173], general solution to transfer
face recognition is largely open.
� Pursuit of extreme accuracy and efficiency. Many killer-
applications, such as watch-list surveillance or financial identity
verification, require high matching accuracy at very low alarm
rate, e.g. 10�9. It is still a big challenge even with deep learning
on massive training data. Meanwhile, deploying deep face
recognition on mobile devices pursues the minimum size of fea-
ture representation and compressed deep network. It is of great
significance for both industry and academic to explore this
extreme face-recognition performance beyond human imagina-
tion. It is also exciting to constantly push the performance lim-
its of the algorithm after it has already surpassed human.
� Fusion issues. Face recognition by itself is far from sufficient to
solve all biometric and forensic tasks, such as distinguishing
identical twins and matching faces before and after surgery
[302]. A reliable solution is to consolidate multiple sources of
biometric evidence [303]. These sources of information may
correspond to different biometric traits (e.g., face + hand
[304]), sensors (e.g., 2D + 3D face cameras), feature extraction
and matching techniques, or instances (e.g., a face sequence of
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various poses). It is beneficial for face biometric and forensic
applications to perform information fusion at the data level, fea-
ture level, score level, rank level, and decision level [305].
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