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Abstract—Collaborative representation methods, such as sparse subspace

clustering (SSC) and sparse representation-based classification (SRC), have

achieved great success in face clustering and classification by directly utilizing the

training images as the dictionary bases. In this paper, we reveal that the superior

performance of collaborative representation relies heavily on the sufficiently large

class separability of the controlled face datasets such as Extended Yale B. On the

uncontrolled or undersampled dataset, however, collaborative representation

suffers from the misleading coefficients of the incorrect classes. To address this

limitation, inspired by the success of linear discriminant analysis (LDA), we

develop a superposed linear representation classifier (SLRC) to cast the

recognition problem by representing the test image in term of a superposition of

the class centroids and the shared intra-class differences. In spite of its simplicity

and approximation, the SLRC largely improves the generalization ability of

collaborative representation, and competes well with more sophisticated dictionary

learning techniques, on the experiments of AR and FRGC databases. Enforced

with the sparsity constraint, SLRC achieves the state-of-the-art performance on

FERET database using single sample per person.

Index Terms—Sparse representation, collaborative representation, sparse

subspace clustering, face clustering, face recognition
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1 INTRODUCTION

A fundamental assumption on image representation is that an
image can be encoded in term of a linear superposition of an ensem-
ble of basis images. The image code is determined by the choice of
basis images. The goal of efficient coding is to find a set of basis
images, which spans the image space, and results in the coefficient
values being as uncorrelated or independent as possible over an
ensemble of training images [1]. One line of approach to this prob-
lem is based on principal component analysis, well-known as Eigen-
faces in computer vision community, which aims to find a set of
mutually orthogonal basis images that capture the direction of max-
imum variance in the face space and for which the coefficients are
pairwise uncorrelated [2]. Eigenfaces is an unsupervised coding
method for reconstruction but not for discrimination [3].

Started by the influential SRC [4], collaborative representation
(CR) based approaches have achieved surprisingly goodperformance
on face clustering [5] and classification [4]. They directly utilize the
training images themselves as the basis images, and assume that the
unseen sample can be linearly represented by the training samples in
the same class. Based on the coding coefficients spanned by all train-
ing samples from all classes, CR basedmethods expect that the major
components can be found in the correct class. Although previous
studies have validated that the coefficient regularizer is not crucial

[6], [7], it is still unclear why the (unsupervised) coding coefficients
based classification, such as SRC and CRC, can outperform the state-
of-the-art (supervised) classifier such as SVM in face recognition.

In this paper, we reveal that the discriminant nature of the col-
laborative representation is determined by the class separability of
the data dictionary, measured by the quantity J ¼ TrfSyTSBg
involving the inter-class scatter normalized by the global scatter.
On the controlled face datasets, because that the class separability
is sufficiently large for nearly perfect clustering and classification,
and the coding coefficients of the CR become naturally discrimina-
tive. This class separability of the facial images can be approxi-
mately exploited by data whitening or discriminant analysis.
As evidence, we evaluate two baseline algorithms based on the sim-
ple metrics that characterize the quantity of TrfSyTSBg, followed by
the traditional clustering or classification methods. Empirical
results show that both the CR based methods, such as SSC [5] and
SRC [4], and our proposed baseline methods can take advantage of
the large class separability of controlled dataset to obtain excellent
clustering and classification performance.

Unfortunately, on the uncontrolled and undersampled datasets,
CR based methods suffer from the misleading coding coefficients
of the incorrect classes. To address this limitation, we propose to
decompose the training sample of CR into prototype (class cen-
troid) and variation (sample-to-centroid difference) parts, and pro-
pose a superposed linear representation that encodes the test
sample as a superposition of the prototype and variation bases [8].
Experimental results on AR, FRGC, and FERET databases show
that the proposed SLRC achieves better performance than current
sophisticated dictionary learning methods, using the under-
sampled and uncontrolled training data. Furthermore, enforced
with the sparsity constraint, SLRC achieves state-of-the-art single-
sample based face recognition performance using an overcomplete
variation dictionary.

2 DISCRIMINANT NATURE OF COLLABORATIVE

REPRESENTATION

This section introduces our finding that the collaborative represen-
tation is discriminative because the controlled dataset has suffi-
ciently large class separability, and this class separability can be
equivalently exploited by traditional feature extraction techniques
such as data whitening and discriminant analysis.

2.1 Problem Definition

Given the training samples denoted by a matrix X ¼ ½x1; x2; . . . ;
xn� 2 Rd�n and a test sample denoted by a vector y 2 Rd�1, we con-
sider the basic problem of representing the test image y as a linear
combination of the training image ensemble, i.e., y ¼ Xa. By
assuming that training samples have been projected into low-
dimensional feature spaces, the coefficient vector a is underspeci-
fied, i.e., many choices of a lead to the same y. To avoid the
complex effect induced by regularization, we analyze the charac-
teristics of coefficients of the least-norm solution. Specifically, the
least-square solution considers the optimization problem

minkak2; s.t. y ¼ Xa; (1)

where optimal solution a ¼ XT ðXXT Þ�1y has the smallest norm of
any solution.

In mathematics, although the condition of feature matrix X
varies, an unique generalized solution to the CR model always
exists such that the squared reconstruction error ky�Xak2 and the
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squared norm of the solution ata are both minimized.1 This unified
and unique solution is denoted by

a ¼ Xyy; (2)

where Xy is called the Pseudoinverse [9] of X. In particular, when
X is full column rank, Xy is computed as Xy ¼ ðXTXÞ�1XT

with XyX ¼ I. When X has full row rank, Xy is computed as
Xy ¼ ðXT ðXXT Þ�1) withXXy ¼ I.

2.2 Close Relationship to Class Separability

The discriminant power of CR comes from the coding coefficients,
and we analyze their characteristic by evaluating the class-specific
summation of the coefficients. Specifically, we sum up the coding
coefficients associated with the ith class, si ¼

Pni
j¼1 ai;j, and evalu-

ate their deviation from the ideal class-specific summation. For the
simplicity of analysis, the ideal class-specific summation of class i

is set to 1 for the samples of the ith class, and set to 0 otherwise.
We define the discriminant power of the coefficients as the consis-
tency with this ideal case.

Formally, the discriminatory ability of the coding coefficients of
sample x can be measured by squared error between ideal and real
concentration as follows:

e ¼ kIi � TXyxk2; if x 2 vi; (3)

while Ii ¼ ½0; . . . ; 1; . . . ; 0�t 2 RC is a class indictor vector whose
only nonzero entry is the ith entry. For the whole training set X,
one can construct an indicator matrix T 2 RC�n whose nonzero
entry in each column indicates the class label of each sample.
Finally, the discriminatory ability of the collaborative coefficients
of the whole training set could be measured by the sum of
“deviation from ideal concentration” over all samples as follows:

E ¼ kT � TXyXk2; (4)

To simplify the analysis, we assume the training data are centered,
and denoted as X̂, i.e., X̂T1 ¼ 0, and concentration degree of the
coefficients can be analyzed as follows:

E ¼ kT � TX̂yX̂k2

¼ TrfðT̂ � T̂ X̂yX̂ÞðT̂ � T̂ X̂yX̂Þtg
¼ TrfT̂ T̂ t � T̂ X̂yX̂T̂ t � T̂ X̂tðX̂yÞtT̂ t þ T̂ X̂yX̂X̂tðX̂yÞtT̂ tg
¼ TrfT̂ T̂ t � T̂ X̂tðX̂X̂tÞyX̂T̂ tg
¼ TrfT̂ T̂ tg � TrfðX̂X̂tÞyX̂T̂ tT̂ X̂tg
¼ TrfT̂ T̂ tg � TrfSyTSBg:

(5)

Note that the matrix X̂X̂t is the total scatter matrix ST , and X̂T̂ tT̂ X̂t

is the between-class scatter matrix, SB. Thus, since the target matrix

T is fixed, the minimum value of E is determined by the trace of
TrfSyTSBg, which iswidely used in discriminant analysis tomeasure
the class separability of the data. It is an intrinsic property of data
themselves, regardless of the solvers of the least-square problem.

When the CR model is applied on the data set with large
TrfSyTSBg, the least-square coding coefficients are naturally con-
centrate on the correct class, and thus the algorithms based on
these coefficients, such as SRC and SSC, also naturally become dis-
criminative, without any special regularization. Our recent work
obtains excellent recognition accuracy by simply accumulating the
coefficients of each class [10]. Fig. 1 shows two examples, i.e., (a)
and (b), where both data sets have the same large TrfSyTSBg, and
the two samples marked by the dark cross have identical coding
coefficients shown in (c). One can see from the Fig 1c that the cod-
ing coefficients are dense but discriminative: all the large coefficients
concentrate on the correct class. Indeed, regularized model may
generate more sparse or concentrated coefficients, but the resulting
complex computation might be not necessary.

2.3 Geometric Interpretation

It is easy to understand that least-square coding coefficients are
discriminative where the data classes are distributed far apart as in
Fig. 1b. For face processing, however, it is a common knowledge
that “the variations between the images of the same class due to
illumination are almost always larger than image variations due
to change in class”[11]. Why is the CR model still applicable for
both face clustering and classification? To investigate this question,
we analyze the physical meaning of the quantity TrfSyTSBg by its
spectral decomposition. Specifically, let UB ¼ fub1; . . . ; ubqg and
LB ¼ f�b1; . . . ; �bqg be the eigenvector and eigenvalues of SBUB ¼
UBLB, and UT ¼ fut1; . . . ; utpg and LT ¼ f�t1; . . . ; �tpg be the eigen-
vector and eigenvalues of STUT ¼ UTLT , where q and p are the
ranks of SB and ST respectively, �b1 � �b2 � . . . � �bq , �t1 � �t2 �
. . . � �tp, and p � q. In light of the similar formulation in [12], the
quantity can be decomposed as follows:

TrfSyTSBg ¼
Xq
i¼1

Xp
j¼1

�bi

�tj
uTtjubi

� �
: (6)

The spectral decomposition of the scatter matrices reveals that the
discriminant power of the coding coefficients is determined by the
sum of the inter-class variances normalized (divided) by the total
variances along the consistent directions. In other words, on the
cases where the inter-class variance is small but the total variance
is also small along the that direction, CR model can recover the
cluster separability hidden in the high dimensional space, such as
that in Fig. 1a.

In a typical controlled face database, the inter-class variance
comes from the subtle difference of the local texture and shape
around the facial features, but the intra-class variance is mainly

Fig. 1. Two-class examples with identical class separability, i.e., TrfSyT SBg, where the points marked by crosses are the test samples to be reconstructed. (a) The example
with subtle inter-class variance, relative to the large total variance. Fortunately, the inter-class variance is perpendicular to the principal direction of global variance. (b) The
example with large inter-class variance, relative to the total variance. (c) The coding coefficients of two test samples in (a) and (b) are identical, and very discriminative.

1. The side conditions used to define the Moore-Penrose pseudo-inverse are
that the squared representation error be minimized and, if there is ambiguity (sev-
eral solutionswith the sameminimum error), the ‘2 norm of a also beminimized.
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caused by global appearance change of illumination and expres-
sion. In the image space, the intra-class image differences are
approximately uncorrelated to the inter-class image differences
[13]. This property of the inter-class and intra-class scatters makes
the principal basis of SB and those of ST are not conflict in the high
dimensional image space [12], so that the quantity of TrfSyTSBg is
sufficiently large. In this sense, the subtle inter-class variance can be
highlighted in the background of dominant intra-class variance. In our
experimental study, we will explore this desirable characteristic for
the face clustering and classification using some TrfSyTSBg related
metrics, and further compare them with CR based methods.

3 SUPERPOSED LINEAR REPRESENTATION BASED

CLASSIFICATION (SLRC)

Inspired by the decomposed representation in discriminant analy-
sis, this section introduces a superposed linear representation
model that constructs dual dictionaries to separately exploit the
inter-class and intra-class variability for CR based classification.

3.1 Decomposed Representation of Linear Discriminant
Analysis

Linear discriminant techniques that aim to preserve class separa-
bility have achieved great success in face recognition [14], [15]. Fur-
ther, by handling the inter- and intra-class variations separately,
previous studies have reported very successful face-recognition
results using the Bayesian matching [13] and unified subspace
analysis [16] framework. Given a data set with multiple samples
per class, the ni samples of class i form a matrix Xi 2 Rd�ni ,
i ¼ 1; . . . ; k,

Pk
i¼1 ni ¼ n. Considering the class labels, we introduce

three d� n basis matrices

HW ¼ ½X1 � c1e
T
1 ; X2 � c2e

T
2 ; . . . ; Xk � cke

T
k �; (7)

HB ¼ ½ðc1 � cÞeT1 ; ðc2 � cÞeT2 ; . . . ; ðck � cÞeTk �; (8)

HT ¼ X̂ ¼ ½ðx1 � cÞ; . . . ; ðxn � cÞ� ¼ X � ceT ; (9)

where ei ¼ ½1; . . . ; 1�T 2 Rni�1, e ¼ ½1; . . . ; 1�T 2 Rn�1, ci ¼ 1
ni
Xiei is

the geometric centroid of class i, and c ¼ 1
nXie is the global cen-

troid. Interestingly, the basis matrices have the relationship
HT ¼ HW þHB [17].

The classical PCA technique derives the subspace by the eigen-
vectors of the total scatter matrix ST ¼ HTH

T
T , which is optimal for

information-preserving and helpful for removing the unreliable
dimension [18]. In contrast, LDA tries to seek the subspace that
best discriminates different classes by maximizing the between-
class scatter, while minimizing the within-class scatter in the pro-
jective subspace. In the theory of LDA, between-class scatter matrix

SB ¼ HBH
T
B characterizes the relation between any two class cent-

roids. The within-class scatter matrix SW ¼ HWHT
W characterizes

sample variations deviation from corresponding class centroid.
In this respect, LDA essentially first decomposes the centered data
into two parts as X̂ ¼ HB þHW , and then find the projective bases
by the optimization criterion

JðwÞ ¼ max
wTHBH

T
Bw

wTHWHT
Ww

: (10)

In the sense, we denote the relationship X̂ ¼ HB þHW as the
decomposed representation of LDA: HB is an approximated represen-
tation that characterizes the samples by corresponding class cent-
roids, and HW represents the residuals of each sample deviated
from the approximationHB.

3.2 Superposed Linear Representation Based
Classification

Although having achieved the great success in robust face recogni-
tion [4], [7], CR suffers from the undersampled problem: When the

training images are insufficient or unrepresentative, the test sample
has to be reconstructed by the samples of other classes, and thus the
coding coefficients generatemisleading results. In essence, this prob-
lem is caused by themixture of the inter-class and intra-class compo-
nents in the dictionary bases, where the intra-class components of
the testing image are possibly borrowed from the incorrect identities.
To overcome this difficulty, we attempt to decompose the collabora-
tive dictionary in a manner similar to the decomposed representa-
tion in LDA inspired by its success in undersampled classification.
Specifically, given a sample x from one of the classes in the training
set, we assume it can be naturally reconstructed by two parts

x ¼ cðxÞ þ ðx� cðxÞÞ; (11)

where cðxÞ is the centroid of corresponding class, and x� cðxÞ is the
intra-class difference from the sample to its class centroid. Apply-
ing this “naive” decomposition to each training sample, we decom-
pose the dictionary of CR into prototype and variation dictionaries.
Following previous notations, the prototype dictionary can be rep-
resented as follows:

P ¼ c1; . . . ; ci; . . . ; ck½ � 2 Rd�k; (12)

where ci is the centroid of class i. As the prototypes are represented
by class centroids, the variation dictionary is naturally constructed
by the sample based difference to the centroids as follows:

V ¼ HW ¼ ½X1 � c1e
T
1 ; . . . ; Xk � cke

T
k � 2 Rd�n: (13)

Fig. 2 illustrates an typical example of the prototype and varia-
tion dictionaries in the image form. One can see from the figure that
the class centroids are visualized as stabilized average images [19],
[20], and the variation images separate out the uncontrolled factors,
such as lighting and sunglasses. With the prototype and variation
dictionaries, we propose the Superposed Linear Representation-
based Classification that casts the recognition problem as finding a
linear representation of the test image in term of a superposition
of the class centroids and the intra-class differences. It is interesting
to point out the similarities between LDA and SLRC as follows.

� Both the prototype dictionary and HB of LDA use an
approximated representation that characterizes the sam-
ples by corresponding class centroids.

Fig. 2. The illustrative examples of the “prototype plus variation” superposed linear
representationmodel. (a) the randomly selected training images from AR database.
(b) the first column contains the “prototypes” derived by averaging the images of the
same subject, and the rest columns are the “sample-to-centroid” variation images.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 10, OCTOBER 2018 2515



� The variation dictionary is identical to HW of LDA, which
is designed to represent the residuals of each samples
deviated from the centroid based approximation. Both
SW ¼ HWHT

W of LDA and the variation dictionary are
shared across all classes.

While LDA emphasizes mainly on discriminative dimension
reduction, SLRC simultaneously satisfies the needs for adequate
signal reconstruction and subsequent classification performance
using dual decomposed dictionaries, which provides a flexible CR
by imposing various regularization on the coefficients. Algorithm 1
below summarizes the complete recognition procedure.

Algorithm 1. Superposed Linear Representation based Classifi-
cation(SLRC)

1: Input: a matrix of training samples A ¼ ½A1; A2; . . . ; Ak� 2
Rd�n for k classes, and an regularization parameter � > 0.
Compute the prototype matrix P according to (12), and the
variation matrix V according to (13). When the sample size
per class is insufficient, the matrix V can be supplemented
from a set of generic samples outside the gallery.

2: Compute the projection matrix F 2 Rd�p by applying PCA
on the training samples A, and project the prototype and
variation matrices to the p-dimensional space.

P  FTP; V  FTV: (14)

3: Normalize the columns of P and V to have unit ‘2-norm, and
solve the ‘1 or ‘2-minimization problem

â1

b̂1

� �
¼ argmin ½P; V � a

b

� �
� y

����
����
2

2

þ� a

b

� �����
����
‘

; (15)

where a; â 2 Rk, b; b̂ 2 Rn. The norm of coefficients ‘ 2 f1; 2g
in our experiment, and corresponding algorithms are
denoted as SLRC-‘1 and SLRC-‘2 respectively.

4: Compute the residuals

riðyÞ ¼ y� ½P; V � diðâ1Þ
b̂1

� �����
����
2

; (16)

for i ¼ 1; . . . ; k, where diðâ1Þ 2 Rn is a new vector whose only
nonzero entries are the entries in â1 that are associated with
class i.

5: Output: IdentityðyÞ ¼ argminiriðyÞ.

When the number of samples per class is insufficient, and in
particular when only a single sample per class is available, the
intra-class variation matrix would become collapsed. To address
this difficulty, one can acquire the intra-class variation bases from
the generic subjects outside the gallery, which are assumed to be
shareable across different subjects.

There have been a number of dictionary learning methods [21],
[22], [23], [24], [25], [26] that effectively improve the generalization
ability of CR. The most similar method is the SDR-SLR [27] that
applies class-wise low-rank decomposition to separate the identity
and intra-class variation dictionaries, and derives sparse and dense
coefficients for two dictionaries respectively. Compared with SDR-
SLR and other learning methods, the “naive” centroid-based dictio-
nary decomposition of SLRC is much more simple, efficient, and
parameter-free. Actually, SLRC has not induced any new parameter
compared to the classical SRC. Although the class centroid is gener-
ally an approximated representation, SLRC competeswell withmore
sophisticated dictionary learning techniques in our experiments.

4 EXPERIMENTAL STUDY

In this section, we first perform the study on the controlled
database to analyze the relationship between class separability

TrfSyTSBg and CR methods. Then, we further demonstrate the
effectiveness of the proposed SLRC on general recognition experi-
ments of the AR, FRGC, and FERET database with uncontrolled
and undersampled training datasets.

4.1 Face Clustering on Controlled Dataset

The Extended Yale B dataset consists of 192�168 pixel cropped face
images of 38 individuals, where there are around 64 frontal face
images for each subject acquired under controlled lighting condi-
tions. To reduce the computational cost and the memory require-
ments of all algorithms, we downsample the images to 48�42
pixels and treat each 2,016D vectorized image as a data point.
As the images are captured under strictly controlled lightning
conditions, it has been validated that the images of each class
approximately reside in a 9-dimensional subspace [11]. In light of
the quantity of TrfSyTSBg, the class separability can be directly
measured by between-class scatter, if the data is whitened, i.e.,
ST ¼ I. Therefore, to better understand this controlled dataset, we
first present some geometric statistics before and after whitening
process.

First, we compute the smallest principal angle for each pair of
subspaces, and accumulate the percentage of the subspace pairs
whose smallest principal angle is below a certain value, ranging
from 0 to 90 degrees. Fig. 3a shows that the subspaces before and
after whitening process have dramatically different principal
angles. Before whitening, principal angles between subspaces are
between 10 and 20 degrees, which indicates that the data between
different subspaces are highly consistent and correlated in the
image space. In contrast, in the whitened space, principal angles
between subspaces are always larger than 75 degrees.

Second, for each pair of subspaces, we accumulate the percent-
age of data points that have one or more of their K-nearest neigh-
bors in the other subspaces. As shown in Fig. 3b, a large proportion
of data points have the nearest neighbors come from the other sub-
space, and this percentage rapidly increases as the number of near-
est neighbors increases. This clearly shows that the within-class
variance is much larger than the between-class variance, and the
clustering of such data is a challenging task. In contrast, in the
whitened space, there are much fewer nearest neighbors belong to
other subspaces. This observation is consistent with our previous

Fig. 3. (a) Percentage of pairs of subspaces whose smallest principal angle is
smaller than a given value. (b) Average percentage of data points in pairs of sub-
spaces that have one or more of their K-nearest neighbors in the other subspace.
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studies [28], [29], [30] that showed the whitening process largely
enhanced the class separability for face recognition.

In the following, we perform clustering experiment on this con-
trolled face dataset as detailed in [5]. Our clustering baseline, called
whitened spectral clustering (WSC), applies conventional spectral
clustering in the whitened PCA subspace. Specifically, WSC first
applies whitened PCA by retaining 98 percent data variance,
and then builds the 7-NN graph for spectral clustering where the
affinity matrix is calculated as follows.

Sðzi; zjÞ ¼ exp � 1� cosðzi; zjÞ
2� ð0:33Þ2

 !
: (17)

The parameters of other methods follow the reference [5]. The com-
parative clustering results are shown in Table 1, and one can see
from the table that the WSC baseline obtains lower clustering
errors than the state-of-the-art subspace clustering algorithms.
The average clustering error rates are as low as 3.75 percent and
4.69 percent average clustering error for 5 and 10 subjects, respec-
tively. This excellent clustering performance of WSC and the geo-
metric findings in Figs. 3a and b are consistent. From the nearly
perfect clustering accuracy, one can conjecture that this controlled
dataset indeed has large class separability, measured by TrfSyTSBg.
For this reason, the whitening process is able to dramatically
improve the subspace separability, and the conventional spectral
clustering method in the whitened space can achieve excellent per-
formance. Although CR based methods, such as SSC and LRR, also
take advantage of the large class separability, their coding coeffi-
cients are suboptimal to measure the neighborhood closeness as
indicated by the higher clustering errors.

4.2 Face Classification on Controlled Dataset

This experiment strictly follows the experiment on the Extended
Yale B database in the influential paper [4], which concludes that
SRC outperforms the state-of-the-art classifiers, such as linear sup-
port vector machine (L-SVM) [35] and nearest subspace (NS) [36],
on various feature spaces. As in [4], we randomly select 32 images
for training for each subject (i.e., about a half of the images per sub-
ject) and the other images for testing. Three conventional features,
namely Eigenfaces, Laplacianfaces, Fisherfaces, and two unconven-
tional features, namely downsampled images and Randomfaces,
are tested. Following the experiment in [4], we compute the recogni-
tion rates with feature space dimensions 30, 56, 120, 504. Note that
Fisherfaces is only available at dimension 30 limited by the number
of classes. To preserve the class separability, our baseline algorithm,
called linear discriminant analysis (LDA) classifier, first projects the
data into the low-dimensional subspace spanned by the eigenvec-
tors of SyTSB, and then applies the nearest neighbor classifier using
cosine similarity measure. LDA baseline is parameter-free, and the
parameter settings of othermethods follow the reference [4].

Table 2 enumerates the comparative performance of tested clas-
sifiers using various feature spaces. LDA baseline achieves recogni-
tion rates between 91.6 and 96.1 percent for all 120D feature spaces
and a maximum rate of 99.4 percent with 504D Eigenfaces2. In con-
trast, the maximum recognition rate for SRC is only 98.1 percent. In
high dimension, such as 504D, the performances of various fea-
tures in conjunction with both SRC and LDA converge, with con-
ventional features and unconventional features performing
similarly. Wright et al. [4] explained this accuracy coverage by the
theory of compressive sensing: 504 linear measurements should
suffice for sparse recovery in the EYB database. However, even
with the Randomfaces that is designate for compressive sensing,
the accuracy difference between LDA and SRC is less than one per-
cent (98.1 versus 97.3 percent in 504D space). Moreover, it should
be noted that LDA baseline is irrelevant to sparse recovery, but
achieves the three highest accuracies, i.e., 99.4, 98.8, 98.8 percent,
over the whole experiment. These results clearly suggest that the
tested features can achieve high accuracy simply because they are
effective to preserve the class separability measured by TrfSyTSBg.

An additional evidence to support our claim is that, in the 30D
Fisherfaces feature space, LDA baseline achieves 98.8 percent accu-
racy while SRC only 86.3 percent. This is because that the low-
dimensional Fisherfaces features preserve the class separability,
but discard most reconstructive information [40]. Clearly, besides
the prerequisite discriminatory information, SRC requires enough
reconstructive information to assure the coding coefficients mean-
ingful. In this experiment, SRC implicitly takes advantage of the
class separability that resides in the reconstructive bases to achieve
nearly perfect accuracy.

To ensure the equitable comparison, we have conducted an
additional experiment using the Eigenfaces feature as suggested in

TABLE 1
Clustering Error (%) of Different Algorithms

on the Extended Yale B Database

Algorithm LSA
[31]

SCC
[32]

LRSC
[33]

LRR-H
[34]

SSC
[5]

WSC

5 Subjects
Mean 58.02 58.90 12.24 6.90 4.31 3.75
Median 56.87 59.38 11.25 5.63 2.50 3.44

8 Subjects

Mean 59.19 66.11 23.72 14.34 5.85 4.28
Median 58.59 64.65 28.03 10.06 4.49 3.52

10 Subjects

Mean 60.42 73.02 30.36 22.92 10.94 4.69
Median 57.50 75.78 28.75 23.59 5.63 3.59

TABLE 2
Recognition Rates (%) on the Extended Yale B Database

Features Classifiers
Feature Dimension

30 56 120 504

Eigenfaces

NS 89.9 91.1 92.5 93.2
L-SVM 70.6 84.3 93.1 96.8
SRC 86.5 91.6 93.9 96.8
LDA 75.0 91.1 96.1 99.4

Laplacianfaces

NS 89.0 90.4 91.9 93.4
L-SVM 72.0 85.0 94.0 97.7
SRC 87.5 91.7 93.9 96.5
LDA 78.5 88.2 95.4 98.8

Fisherfaces

NS 81.9 N/A N/A N/A
L-SVM 86.7 N/A N/A N/A
SRC 86.1 N/A N/A N/A
LDA 98.8 N/A N/A N/A

Randomfaces

NS 87.3 91.5 93.9 94.1
L-SVM 48.8 68.6 83.4 91.4
SRC 82.6 91.5 95.5 98.1
LDA 86.9 90.2 91.6 97.3

Downsample

NS 80.8 88.2 91.1 93.4
L-SVM 48.9 69.5 79.0 91.6
SRC 74.6 86.2 92.1 97.1
LDA 77.8 86.9 92.5 96.4

2. LDA in 504D eigenspace performs the best among all dimension reduction
approaches and among all classifiers. As suggested in [18], PCA helps improve
the classification accuracy because it has some roles in removing the unreliable
dimension. Specifically, due to the high dimension and small sample size of the
face dataset, the components corresponding to small eigenvalues largely deviate
from the population variances [37], removing them by PCA not only circumvents
the singularity problem of the scatter matrices, but, more importantly, obtains a
more reliable estimation of the eigen-spectrum for discriminant analysis [18].
This finding suggests that the accuracy of LDA can be further improved by a
selection of PCA features [38] or proper eigen-specturum regularization [39].
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[41]. In the training stage, we apply the 10-fold cross validation to
select the optimum values of the parameters (subspace dimension
d of NS, C of L-SVM, and � in SRC) at the uniformly sampled inter-
mediate PCA dimensions (p), i.e., 100, 200, . . . 1000. We find that
the performance of all classifiers become steady when the retained
PCA dimension is larger than 500. The best testing accuracy of the
NS, L-SVM, SRC, LDA classifiers are 93.6 percent (p=800, d=20),
97.1 percent (p=900, C=1000), 97.2 percent (p=1000, �=0.001), and
99.8 percent (p=800) respectively. These best accuracies are similar
to the ones using 504D eigenspace, which validates our observa-
tions on Table 2.

In summary, LDA, SRC, and L-SVM all achieve excellent per-
formance on this controlled dataset with large class separability.
One should pay more attention to the general problem with uncon-
trolled and undersampled training set.

4.3 Recognition with Contaminative Training Set

The AR database consists of over 3,000 frontal images of 126 indi-
viduals. There are 26 images of each individual, taken at two differ-
ent occasions [42]. The faces in AR contain variations such as
illumination change, expressions and facial disguises (i.e., sun
glasses or scarf). We randomly select 100 subjects (50 male and
50 female) for our experiments, and the images are cropped with
dimension 165 � 120. For each subject, the 26 images are randomly
permuted and then the first half is taken for training and the rest
for testing. In this way, we have 1,300 training images and 1,300
test images. For statistical stability, 10 different training and test set
pairs are generated by randomly permuting, and averaged accu-
racy and standard deviation are reported. Except the SDR-SLR
method that works on the downsampled images, all tested meth-
ods are applied on the 300 dimensional PCA space following the
setting in [6].

While SRC achieves nearly perfect accuracy on the controlled
EYB database, it yields only an average accuracy of 92.82 percent
that is notably worse than the 94.39 percent accuracy of basic ‘2
approach [6]. As suggested by Wright et al. [45], SRC suffers from
the corrupted and occluded training images occlusion that would
break the sparsity assumption. In this situation, class-specific con-
centration of coefficients is violated. For example, the test images
wearing sunglasses tend to induce large coding coefficients on the
subjects also with sunglasses. ‘2 regularization based CRC per-
forms slightly better than SRC. These results are consistent with
that found by Shi et al. [6]. Furthermore, LDA baseline outperforms
both SRC and CRC by a large margin, which shows that the collab-
orative representations cannot fully exploit the class separability
residing in the uncontrolled training images.

However, one should not deny the usefulness of the CR solely
based on the inferiority of the training image based dictionary. We

find that the discrimination power of coding coefficients relies heavily on
the suitable choice of dictionary bases. Specifically, Table 3 fairly com-
pares SRC, Extended SRC (ESRC) [43], Low-rank recovery with
structure incoherence (LR+SI) [44], SLRC-‘2 and SLRC-‘1 in the 300
dimensional PCA space. By simply re-construct the dictionary by
the class centroids based decomposition, the SLRC-‘2 dramatically
boosts the recognition accuracy to about 97 percent. The ESRC
method, which appends an intra-class dictionary to the training
samples, also increases the accuracy to about 97 percent, but using
a much larger dictionary of 2600 bases. When imposed to super-
posed representation, SLRC-‘1 outperforms SLRC-‘2 by a margin
nearly two times standard deviation. Clearly, sparsity constraint is
useful in selecting the intra-class variation bases of superposed
representation.

The recently proposed SDR-SLR method also achieves similar
accuracy to SLRC, in which the supervised low-rank dictionary
learning is effective to separate the intra-class variation. Note that
the centroids based dictionary of SLRC is parameter-free and very
efficiently to construct, and the size of dictionary for classification
is similar to CR. In comparison to SDR-SLR, SLRC provides a more
simple and efficient solution to the contaminative training set. Its
superior accuracy indicates that class centroid indeed provides a
stabilized prototype by feature averaging, and the separated con-
taminative variation can be shared across classes.

Inspired by the previous finding that a good choice of retained
PCA greatly improves the LDA performance [14], [15], [46], we
investigate how the PCA dimension affects the recognition perfor-
mance of CR (on the first out of the ten training/test partitions).
Fig. 4 confirms that, on this AR dataset with relatively large sample
size and controlled variations, the performance of the classifier
does not depend so much on the dimension of the intermediate
PCA subspace. In this experiment, we can safely select all dimen-
sions of this subspace. Moreover, SLRC displays a steady improve-
ment on the SRC/CRC and LDA in all dimensionality, clearly
suggesting that the proposed superposed representation successfully
overlays the advantages of the stability of the CR, and the discrimination
ability of the LDA (by the decomposed representation).

4.4 Recognition with Small Uncontrolled Training Set

The FRGC version 2.0 is a large-scale face database established
under uncontrolled indoor and outdoor settings [47]. We used a
subset (316 subjects with no less than ten samples, 7,318 images in
total) of the query face dataset, which has large lighting, accessory
(e.g., glasses), expression variations and image blur, etc. We ran-
domly chose 3-5 samples per subject as the training set, and used
the remaining images for testing. The aligned images are down-
sampled to 42�32 and the experiments were run 10 times to calcu-
late the mean and standard deviation. Some downsampled images

TABLE 3
Comparative Recognition Rates of SLRC and

Other Recognition Methods

Algorithms Dictionary Size Accuracy

‘2 [6] 300 � 1300 94.39 � 1.35%
Nearest Subspace [36] 300 � 1300 90.24 � 2.16%
Random OMP [6] 300 � 1300 84.85 � 3.43%
Hash OMP [6] 300 � 1300 86.92 � 3.44%
CRC [7] 300 � 1300 93.76 � 0.92%
SRC [4] 300 � 1300 92.82 � 0.95%
LDA 300 � 1300 96.55 � 0.25%
ESRC [43] 300 � 2600 96.88 � 0.71%
LR+SI [44] 300 � 1300 96.98 � 0.81%
SDR-SLR [27] (41 � 30) � 2600 98.15 � 0.54%
SLRC-‘2 300 � 1400 97.25 � 0.64%
SLRC-‘1 300 � 1400 98.31 � 0.44%

The results of the first four rows are cited from [6] under identical experimental
settings.

Fig. 4. The recognition performance as the dimension of the intermediate PCA
subspace increases on the AR dataset.
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are shown in Fig. 5. We compare the proposed SLRC with seven
latest dictionary learning based methods including joint dictionary
learning (JDL) [21], dictionary learning with commonality and par-
ticularity (COPAR) [22], label consistent KSVD (LCKSVD) [23], dis-
criminative KSVD (DKSVD) [24], dictionary learning with
structure incoherence (DLSI) [25], Fisher discrimination dictionary
learning (FDDL) [26], sparse- and dense-hybrid representation
framework with supervised low-rank dictionary (SDR-SLR) [27].
Except the SDR-SLR method that works on the downsampled
images, all tested methods are applied on the 300 dimensional
PCA space following the setting in [26].

The comparative results are listed in Table 4. SLRC-‘1 per-
forms better than SLRC-‘2 in all the three cases. This suggests
the sparsity constraint is crucial for the superposed linear repre-
sentation. It can be seen that in most cases SLRC-‘1 can have vis-
ible improvement over all the other methods. SLRC outperforms
SRC by about 8.6, 6.6, and 5.1 percent when there are 3, 4, and 5
training images per person. This clearly shows the effectiveness
of the “naive” parameter-free decomposition of the centroid
and intra-class variation in SLRC, especially on the small sample
size cases. By this simple decomposition, SLRC also outperforms
seven state-of-the-art dictionary learning methods with sophisti-
cated settings.

The COPARmethod [22] also considers the common and partic-
ular components in the dictionary, but the learned dictionary can-
not extract the accurate inter/intra-class components as indicated
by its inferior accuracy. The SDR-SLR method [27], which develops
a class-wise supervised low rank decomposition to learn the intra-
class dictionary, achieves comparable accuracy that is better than
SLRC-‘2 but slightly worse than SLRC-‘1. This may be because that
the dense coefficients of SDR-SLR are not optimal for a dictionary
of uncontrolled overcomplete intra-class variation bases. Com-
pared with these sophisticated dictionary learning methods, SLRC
indeed provides a simple but powerful solution to generalize the
CR to the uncontrolled face recognition problem.

As in the AR experiment, we investigate how the choice of
retained PCA dimension affects the recognition performance (on the
first out of the ten training/test partitions). Different from the obser-
vation on AR dataset, Fig. 6 shows that LDA achieves comparable

performance with SRC/CRC within the 200-400 dimension, but
deteriorates dramatically as the dimensionality becomes higher.
This observation on curse of dimensionality is consistent with
previous studies [15] on the small size dataset. This is because the
trivial components are enlarged by the whitening process of LDA,
and these components tend to be noisy when the training samples
are insufficient. In contrast, even on this small size dataset with
uncontrolled variations, the four CR methods achieve steady accu-
racy across varying retained PCA dimensions. Their accuracies
steadily increase when the dimension is larger than 300. Identical
to the results on the AR database, SLRC inherits the stability of
CR and displays a steady improvement on the SRC/CRC and
LDA in all dimensionality.

4.5 Recognition with Single Sample Per Person

The final experiment aims to evaluate the applicability of SLRC with
only a single training sample per person. The experiment follows the
standard data partitions of the FERET database [48]. The images
are first normalized by a similarity transformation that sets the cen-
ters of the eyes at the settled coordinates. Fig. 7a shows some
cropped images which are used in our experiments. Note that the
images of FERET database contain complex intra-class variability,
since they are acquired in multiple sessions during several years.
As there is only a single sample per gallery class, we construct the
intra-class variation matrix from the standard training image set of
the FRGC Version 2 database [47], which contains 12,766 frontal
images of 222 people taken in the uncontrolled conditions. Fig. 7b
shows some intra-class differences computed by (13) from this
image set. Note that the collection of the FRGC database is totally
independent from the FERET database. Hence, in this experiment,
the variation dictionary is required to universally represent the
complex facial variations under uncontrolled conditions.

Fig. 5. Some sample images from the FRGC 2.0 database.

TABLE 4
The Face Recognition Rates (%) of Competing Methods on the FRGC

2.0 Database withN Training Samples per Person

Algorithms N ¼ 3 N ¼ 4 N ¼ 5

SRC [4] 80.4 � 0.6 87.0 � 0.6 87.7 � 0.4
CRC [7] 82.6 � 0.6 87.4 � 0.6 89.7 � 0.3
LDA 79.0 � 0.8 87.0 � 0.7 90.2 � 0.7
NSC [36] 54.7 � 0.7 63.0 � 0.6 69.3 � 0.6
SVM [35] 57.1 � 0.7 66.2 � 0.7 72.9 � 0.7
DKSVD [24] 72.2 � 0.6 77.2 � 0.7 79.7 � 0.7
LCKSVD [23] 75.7 � 0.6 78.1 � 0.5 79.8 � 0.8
DLSI [25] 86.7 � 0.6 91.4 � 0.5 93.5 � 0.3
COPAR [22] 81.3 � 0.6 86.9 � 0.6 89.5 � 0.6
JDL [21] 83.0 � 0.7 88.2 � 0.5 91.2 � 0.5
SDR-SLR [27] 89.5 � 0.8 93.1 � 0.4 94.2 � 0.4
FDDL [26] 89.0 � 0.8 92.9 � 0.3 95.1 � 0.3
SLRC-‘2 85.0 � 0.6 91.1 � 0.5 92.8 � 0.3
SLRC-‘1 90.0 � 0.7 93.6 � 0.6 95.2 � 0.4

Fig. 6. The recognition performance as the dimension of the intermediate PCA subspace increases on the FRGCdataset using (a) 3 (b) 4 (c) 5 training samples per person.
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As the performance of SLRC increases stably with higher the
PCA dimension, we select the PCA dimension as high as 1,000,
and investigate the regularization effects on the uncontrolled and
over-complete variation dictionary. Specifically, we first test the
performance of the SLRC-‘2 by increasing the parameter � from
0.000001 to 100, as shown in Fig. 8. When the value of � is relatively
large in the range of ½0:1; 10�, ‘2-norm regularization obtains its
optimal performance. However, the optimal performance of
‘2-norm regularization is significantly lower than that of SLRC-‘1
tested with limited number of � ¼ f0:0005; 0:005; 0:01g. The superi-
ority of SLRC-‘1 seems more apparent on the dup1 and dup2 set. A
large margin over 10 percent accuracy is observed on dup1 set
when comparing SLRC-‘1 with SLRC-‘2. This implies that sparse
coefficients indeed play a crucial role in face recognition given an
uncontrolled and over-complete dictionary.

For comprehensive results, we also extract the Gabor feature,
LBP feature and PCANet [50] feature for classification besides the
pixel intensity. For each feature, we test the recognition perfor-
mance in the reduced PCA dimension of 1000. In total, there are 16
test cases (4 probes�4 features) and Table 5 lists the comparative
performance between SRC and SLRC in all cases. Although the vari-
ation dictionary is constructed from the FRGC database, SLRC
improves the recognition rates on the FERET database in all the 16
test cases, indicating that the intra-class variability of face is sharable

even when the generic data are collected from different conditions
and camera set-ups. Our results also suggest that the superposed
linear representation model is feasible for various feature represen-
tations, and thus it can be integratedwithmore informative features
to address uncontrolled face recognition problem.When applied on
the PCANet feature, SLRC achieves state-of-the-art performance on
FERET database with a single training sample per person. The
improvement is visible on the dup1 and dup2 probe sets, which
indicates the sparse coding can play an important role on selecting
bases to represent the real-world age variation.

5 CONCLUSIONS

The experiments suggest a number of conclusions:

1. The class superability of the controlled face dataset, such as
Extended Yale B database, is sufficiently large. Both the tra-
ditional baseline algorithms that characterize the quantity
of TrfSyTSBg, and the collaborative representation meth-
ods, such as SSC and SRC, can achieve excellent clustering
and classification performance. The research should pay
more attention to the general problem with uncontrolled
and undersampled datasets.

2. By the “naive” centroid based dictionary decomposition,
the new SLRC successfully overlays the advantages of
the robustness of the collaborative representation, and
the discrimination ability of the LDA (by the decomposed
representation).

3. Although the class centroid is generally an approximated
representation, in practice SLRC competes well with more
sophisticated dictionary learning techniques in our experi-
ments. Moreover, SLRC does not substantially increase
computation and storage compared to basic collaborative
representation methods such as SRC and CRC.

4. By constructing intra-class dictionary from the generic
dataset, SLRC is effective to address the recognition prob-
lem with single sample per person. Thanks to its simple
representation assumption, it is also applicable to various
feature descriptors besides pixel intensity, by which state-
of-the-art face recognition performance can be achieved.

5. When the variation dictionary is overcomplete, sparse coef-
ficient regularizer plays a crucial role on recognition: SLRC
with ‘1-sparsity lasso solution outperforms ‘2 ridge regres-
sion solution by a large margin for face recognition.
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Fig. 7. (a) The cropped images of some gallery images and corresponding probe
images in the FERET database. (b) Example images of the differences to the class
centroid computed from the FRGC version 2 database.

Fig. 8. The recognition rates of SLRCwith ‘1-regularization (plotted by thick symbols)
and ‘2-regularization (plotted by the thin symbols) as a function of the value of �.

TABLE 5
Comparative Recognition Rates of SRC and SLRC on FERET

Database Using Single Training Sample per Person

Features Methods fb fc dup1 dup2

Intensity
SRC 85.2 76.3 63.9 57.3
SLRC-‘1 87.9 91.8 68.6 67.5

Gabor [14]
SRC 93.0 97.4 73.0 78.6
SLRC-‘1 96.7 99.5 80.7 85.5

LBP [49]
SRC 96.9 93.8 87.7 85.0
SLRC-‘1 98.0 99.5 90.6 90.2

PCANet [50]
SRC 98.8 99.0 94.9 92.3
SLRC-‘1 99.4 100.0 96.3 95.7
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