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a b s t r a c t 

Deep domain adaptation has emerged as a new learning technique to address the lack of massive 

amounts of labeled data. Compared to conventional methods, which learn shared feature subspaces or 

reuse important source instances with shallow representations, deep domain adaptation methods lever- 

age deep networks to learn more transferable representations by embedding domain adaptation in the 

pipeline of deep learning. There have been comprehensive surveys for shallow domain adaptation, but 

few timely reviews the emerging deep learning based methods. In this paper, we provide a compre- 

hensive survey of deep domain adaptation methods for computer vision applications with four major 

contributions. First, we present a taxonomy of different deep domain adaptation scenarios according to 

the properties of data that define how two domains are diverged. Second, we summarize deep domain 

adaptation approaches into several categories based on training loss, and analyze and compare briefly 

the state-of-the-art methods under these categories. Third, we overview the computer vision applications 

that go beyond image classification, such as face recognition, semantic segmentation and object detection. 

Fourth, some potential deficiencies of current methods and several future directions are highlighted. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Over the past few years, machine learning has achieved great

uccess and has benefited real-world applications. However, col-

ecting and annotating datasets for every new task and domain

re extremely expensive and time-consuming processes, sufficient

raining data may not always be available. Fortunately, the big

ata era makes a large amount of data available for other do-

ains and tasks. For instance, although large-scale labeled video

atabases that are publicly available only contain a small num-

er of samples, statistically, the YouTube face dataset (YTF) con-

ists of 3.4 K videos. The number of labeled still images is more

han sufficient [1] . Hence, skillfully using the auxiliary data for

he current task with scarce data will be helpful for real-world

pplications. 

However, due to many factors (e.g., illumination, pose, and im-

ge quality), there is always a distribution change or domain shift

etween two domains that can degrade the performance, as shown

n Fig. 1 . Mimicking the human vision system, domain adaptation

DA) is a particular case of transfer learning (TL) that utilizes la-

eled data in one or more relevant source domains to execute new

asks in a target domain. Over the past decades, various shallow DA

ethods have been proposed to solve a domain shift between the
∗ Corresponding author. 
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ource and target domains. The common algorithms for shallow

A can mainly be categorized into two classes: instance-based DA

2,3] and feature-based DA [4–7] . The first class reduces the dis-

repancy by reweighting the source samples, and it trains on the

eighted source samples. For the second class, a common shared

pace is generally learned in which the distributions of the two

atasets are matched. 

Recently, neural-network-based deep learning approaches have

chieved many inspiring results in visual categorization applica-

ions, such as image classification [8] , face recognition [9] , and

bject detection [10] . Simulating the perception of the human

rain, deep networks can represent high-level abstractions by mul-

iple layers of non-linear transformations. Existing deep network

rchitectures [11] include convolutional neural networks (CNNs)

8,12–14] , deep belief networks (DBNs) [15] , and stacked autoen-

oders (SAEs) [16] , among others. Although some studies have

hown that deep networks can learn more transferable represen-

ations that disentangle the exploratory factors of variations un-

erlying the data samples and group features hierarchically in

ccordance with their relatedness to invariant factors, Donahue

t al. [17] showed that a domain shift still affects their perfor-

ance. The deep features would eventually transition from gen-

ral to specific, and the transferability of the representation sharply

ecreases in higher layers. Therefore, recent work has addressed

his problem by deep DA, which combines deep learning and

A. 

https://doi.org/10.1016/j.neucom.2018.05.083
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.05.083&domain=pdf
mailto:whdeng@bupt.edu.cn
https://doi.org/10.1016/j.neucom.2018.05.083
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Fig. 1. (a) Some object images from the “Bike” and “Laptop” categories in Amazon, DSLR, Webcam, and Caltech-256 databases. (b) Some digit images from MNIST, USPS, 

and SVHN databases. (c) Some face images from LFW, BCS and CUFS databases. Realworld computer vision applications, such as face recognition, must learn to adapt to 

distributions specific to each domain. 
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There have been other surveys on TL and DA over the past

few years [18–23] . Pan and Yang [18] categorized TL under three

subsettings, including inductive TL, transductive TL, and unsuper-

vised TL, but they only studied homogeneous feature spaces. Shao

et al. [19] categorized TL techniques into feature-representation-

level knowledge transfer and classifier-level knowledge transfer.

The survey written by Patel et al. [21] only focused on DA, a

subtopic of TL. Day and Khoshgoftaar [20] discussed 38 meth-

ods for heterogeneous TL that operate under various settings, re-

quirements, and domains. Zhang et al. [22] were the first to

summarize several transferring criteria in detail from the con-

cept level. These five surveys mentioned above only cover the

methodologies on shallow TL or DA. The work presented by Csurka

[23] briefly analyzed the state-of-the-art shallow DA methods and

categorized the deep DA methods into three subsettings based

on training loss: classification loss, discrepancy loss and adver-

sarial loss. However, Csurka’s work mainly focused on shallow

methods, and it only discussed deep DA in image classification

applications. 

In this paper, we focus on analyzing and discussing deep DA

methods. Specifically, the key contributions of this survey are as

follows: (1) we present a taxonomy of different deep DA scenarios

according to the properties of data that define how two domains

are diverged. (2) extending Csurka’s work, we improve and detail

the three subsettings (training with classification loss, discrepancy

loss and adversarial loss) and summarize different approaches used

in different DA scenes. (3) Considering the distance of the source

and target domains, multi-step DA methods are studied and cate-

gorized into hand-crafted, feature-based and representation-based

mechanisms. (4) We provide a survey of many computer vision

applications, such as image classification, face recognition, style

translation, object detection, semantic segmentation and person

re-identification. 

The remainder of this survey is structured as follows. In

Section 2 , we first define some notations, and then we categorize

deep DA into different settings (given in Fig. 2 ). In the next three

sections, different approaches are discussed for each setting, which

are given in Table 1 and Table 2 in detail. Then, in Section 6 , we in-

troduce some successful computer vision applications of deep DA.

Finally, the conclusion of this paper and discussion of future works

are presented in Section 7 . 

g  

f  
. Overview 

.1. Notations and definitions 

In this section, we introduce some notations and definitions

hat are used in this survey. The notations and definitions match

hose from the survey papers by [18,23] to maintain consistency

cross surveys. A domain D consists of a feature space X and a

arginal probability distribution P ( X ), where X = { x 1 , . . . , x n } ∈ X .

iven a specific domain D = {X , P (X ) } , a task T consists of a fea-

ure space Y and an objective predictive function f ( · ), which can

lso be viewed as a conditional probability distribution P ( Y | X ) from

 probabilistic perspective. In general, we can learn P ( Y | X ) in a su-

ervised manner from the labeled data { x i , y i }, where x i ∈ X and

 i ∈ Y . 

Assume that we have two domains: the training dataset with

ufficient labeled data is the source domain D 

s = {X 

s , P (X ) s } , and

he test dataset with a small amount of labeled data or no la-

eled data is the target domain D 

t = {X 

t , P (X ) t } . We see that the

artially labeled part, D 

tl , and the unlabeled parts, D 

tu , form the

ntire target domain, that is, D 

t = D 

tl ∪ D 

tu . Each domain is to-

ether with its task: the former is T s = {Y 

s , P (Y s | X s ) } , and the lat-

er is T t = {Y 

t , P (Y t | X t ) } . Similarly, P ( Y s | X 

s ) can be learned from

he source labeled data { x s 
i 
, y s 

i 
} , while P ( Y t | X 

t ) can be learned from

abeled target data { x tl 
i 
, y tl 

i 
} and unlabeled data { x tu 

i 
} . 

.2. Different settings of domain adaptation 

The case of traditional machine learning is D 

s = D 

t and T s =
 

t . For TL, Pan and Yang [18] summarized that the differences be-

ween different datasets can be caused by domain divergence D 

s � =
 

t (i.e., distribution shift or feature space difference) or task diver-

ence T s � = T t (i.e., conditional distribution shift or label space dif-

erence), or both. Based on this summary, Pan et al. categorized TL

nto three main groups: inductive, transductive and unsupervised

L. 

According to this classification, DA methods are transductive

L solutions with the assumption that the tasks are the same,

.e., T s = T t , and the differences are only caused by domain di-

ergence, D 

s � = D 

t . Therefore, DA can be split into two main cate-

ories based on different domain divergences (distribution shift or

eature space difference): homogeneous and heterogeneous DA.
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Fig. 2. An overview of different settings of domain adaptation. 

Table 1 

Different deep approaches to one-step DA. 

One-step DA approaches Brief description subsettings 

Discrepancy-based fine-tuning the deep network with labeled or unlabeled 

target data to diminish the domain shift 

class criterion [26,27] [28–32] [26,33–36] 

statistic criterion [32,34,37–39] [40–43] 

architecture criterion [44–4 8] [4 9] 

geometric criterion [50] 

Adversarial-based using domain discriminators to encourage domain 

confusion through an adversarial objective 

generative models [51–53] 

non-generative models [26,54–57] [58] 

Reconstruction-based using the data reconstruction as an auxiliary task to 

ensure feature invariance 

encoder–decoder reconstruction [43,59–61] 

adversarial reconstruction [62–64] 

Table 2 

Different deep approaches to multi-step DA. 

Multi-step approaches Brief description 

Hand-crafted users determine the intermediate domains based on experience [65] 

Instance-based selecting certain parts of data from the auxiliary datasets to compose the intermediate domains [25,50] 

Representation-based freeze weights of one network and use their intermediaterepresentations as input to the new network [66] 
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a  
hen, we can further categorize DA into supervised, semi-

upervised and unsupervised DA in consideration of labeled data

f the target domain. The classification is given in Fig. 2 . 

• In the homogeneous DA setting, the feature spaces between

the source and target domains are identical ( X 

s = X 

t ) with

the same dimension ( d s = d t ). Hence, the source and target

datasets are generally different in terms of data distributions

( P ( X ) s � = P ( X ) t ). 

In addition, we can further categorize the homogeneous DA set-

ing into three cases: 

1. In the supervised DA, a small amount of labeled target data,

D 

tl , are present. However, the labeled data are commonly

not sufficient for tasks. 

2. In the semi-supervised DA, both limited labeled data, D 

tl ,

and redundant unlabeled data, D 

tu , in the target domain are

available in the training stage, which allows the networks to

learn the structure information of the target domain. 

3. In the unsupervised DA, no labeled but sufficient unlabeled

target domain data, D 

tu , are observable when training the

network. 

• In the heterogeneous DA setting, the feature spaces between

the source and target domains are nonequivalent ( X 

s � = X 

t ), and

the dimensions may also generally differ ( d s � = d t ). 

Similar to the homogeneous setting, the heterogeneous DA set-

ing can also be divided into supervised, semi-supervised and un-

upervised DA. 
All of the above DA settings assumed that the source and tar-

et domains are directly related; thus, transferring knowledge can

e accomplished in one step. We call them one-step DA. In reality,

owever, this assumption is occasionally unavailable. There is lit-

le overlap between the two domains, and performing one-step DA

ill not be effective. Fortunately, there are some intermediate do-

ains that are able to draw the source and target domains closer

han their original distance. Thus, we use a series of intermedi-

te bridges to connect two seemingly unrelated domains and then

erform one-step DA via this bridge, named multi-step (or transi-

ive) DA [24,25] . For example, face images and vehicle images are

issimilar between each other due to different shapes or other as-

ects, and thus, one-step DA would fail. However, some interme-

iate images, such as ‘football helmet’, can be introduced to be an

ntermediate domain and have a smooth knowledge transfer. Fig. 3

hows the differences between the learning processes of one-step

nd multi-step DA techniques. 

. Approaches of deep domain adaptation 

In a broad sense, deep DA is a method that utilizes a deep

etwork to enhance the performance of DA. Under this defini-

ion, shallow methods with deep features [17,67–70] can be con-

idered as a deep DA approach. DA is adopted by shallow meth-

ds, whereas deep networks only extract vectorial features and

re not helpful for transferring knowledge directly. For example,

u et al. [71] extracted the convolutional activations from a CNN

s the tensor representation, and then performed tensor-aligned
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Fig. 3. Different learning processes between (a) traditional machine learning, (b) one-step domain adaptation and (c) multi-step domain adaptation [18] . 
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invariant subspace learning to realize DA. This approach reliably

outperforms current state-of-the-art approaches based on tradi-

tional hand-crafted features because sufficient representational and

transferable features can be extracted through deep networks,

which can work better on discrimination tasks [17] . 

In a narrow sense, deep DA is based on deep learning archi-

tectures designed for DA and can obtain a firsthand effect from

deep networks via back-propagation. The intuitive idea is to em-

bed DA into the process of learning representation and to learn

a deep feature representation that is both semantically meaning-

ful and domain invariant. With the “good” feature representations,

the performance of the target task would improve significantly. In

this paper, we focus on the narrow definition and discuss how to

utilize deep networks to learn “good” feature representations with

extra training criteria. 

3.1. Categorization of one-step domain adaptation 

In one-step DA, the deep approaches can be summarized into

three cases, which refers to [23] . Table 1 shows these three cases

and brief descriptions. The first case is the discrepancy-based deep

DA approach, which assumes that fine-tuning the deep network

model with labeled or unlabeled target data can diminish the shift

between the two domains. Class criterion, statistic criterion, archi-

tecture criterion and geometric criterion are four major techniques

for performing fine-tuning. 

• Class criterion: uses the class label information as a guide for

transferring knowledge between different domains. When the

labeled samples from the target domain are available in su-

pervised DA, soft label and metric learning are always effective

[26–28,30,31] . When such samples are unavailable, some other

techniques can be adopted to substitute for class labeled data,

such as pseudo labels [29,32–34] and attribute representation

[26,35] . 

• Statistic criterion: aligns the statistical distribution shift be-

tween the source and target domains using some mechanisms.

The most commonly used methods for comparing and reduc-

ing distribution shift are maximum mean discrepancy (MMD)

[32,34,37–40] , correlation alignment (CORAL) [41,42] , Kullback–

Leibler (KL) divergence [43] and H divergence, among others. 

• Architecture criterion: aims at improving the ability of learn-

ing more transferable features by adjusting the architectures of

deep networks. The techniques that are proven to be cost effec-

tive include adaptive batch normalization (BN) [44–46] , weak-

related weight [47] , domain-guided dropout [48] , and so forth. 

• Geometric criterion: bridges the source and target domains ac-

cording to their geometrical properties. This criterion assumes

that the relationship of geometric structures can reduce the do-
main shift [50] . 
The second case can be referred to as an adversarial-based

eep DA approach [54] . In this case, a domain discriminator that

lassifies whether a data point is drawn from the source or tar-

et domain is used to encourage domain confusion through an

dversarial objective to minimize the distance between the em-

irical source and target mapping distributions. Furthermore, the

dversarial-based deep DA approach can be categorized into two

ases based on whether there are generative models. 

• Generative models: combine the discriminative model with a

generative component in general based on generative adversar-

ial networks (GANs). One of the typical cases is to use source

images, noise vectors or both to generate simulated samples

that are similar to the target samples and preserve the anno-

tation information of the source domain [51–53] . 

• Non-generative models: rather than generating models with

input image distributions, the feature extractor learns a dis-

criminative representation using the labels in the source do-

main and maps the target data to the same space through a

domain-confusion loss, thus resulting in the domain-invariant

representations [26,54–56,58] . 

The third case can be referred to as a reconstruction-based

A approach, which assumes that the data reconstruction of the

ource or target samples can be helpful for improving the per-

ormance of DA. The reconstructor can ensure both specificity

f intra-domain representations and indistinguishability of inter-

omain representations. 

• Encoder-decoder reconstruction: by using stacked autoen-

coders (SAEs), encoder–decoder reconstruction methods com-

bine the encoder network for representation learning with a

decoder network for data reconstruction [43,59–61] . 

• Adversarial reconstruction: the reconstruction error is mea-

sured as the difference between the reconstructed and origi-

nal images within each image domain by a cyclic mapping ob-

tained via a GAN discriminator, such as dual GAN [62] , cycle

GAN [63] and disco GAN [64] . 

.2. Categorization of multi-step domain adaptation 

In multi-step DA, we first determine the intermediate domains

hat are more related with the source and target domains than

heir direct connection. Second, the knowledge transfer process

ill be performed between the source, intermediate and target do-

ains by one-step DA with less information loss. Thus, the key of

ulti-step DA is how to select and utilize intermediate domains;

dditionally, it can fall into three categories referring to [18] : hand-

rafted, feature-based and representation-based selection mecha-

isms. 

• Hand-crafted: users determine the intermediate domains based
on experience [65] . 
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Table 3 

Different approaches used in different domain adaptation settings. 

Supervised DA Unsupervised DA 

Discrepancy-based Class criterion 
√ 

Statistic criterion 
√ 

Architecture criterion 
√ √ 

Geometric criterion 
√ 

Adversarial-based Generative model 
√ 

Non-generative model 
√ 

Reconstruction-based encoder–decoder Model 
√ 

Adversarial Model 
√ 

Table 4 

Some common rules of thumb for deciding fine-tuned or frozen in the first n layers 

[73] . 

The size of target dataset 

Low Medium High 

The distance Low Freeze Try freeze or tune Tune 

between Medium Try freeze or tune Tune Tune 

source and target High Try freeze or tune Tune Tune 
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• Instance-based: selecting certain parts of data from the auxil-

iary datasets to compose the intermediate domains to train the

deep network [25,50] . 

• Representation-based: transfer is enabled via freezing the pre-

viously trained network and using their intermediate represen-

tations as input to the new one [66] . 

. One-step domain adaptation 

As mentioned in Section 2.1 , the data in the target domain have

hree types regardless of homogeneous or heterogeneous DA: (1)

upervised DA with labeled data, (2) semi-supervised DA with la-

eled and unlabeled data and (3) non-supervised DA with unla-

eled data. The second setting is able to be accomplished by com-

ining the methods of setting 1 and setting 3; thus, we only fo-

us on the first and third settings in this paper. The cases where

he different approaches are mainly used for each DA setting are

hown in Table 3 . As shown, more work is focused on unsu-

ervised scenes because supervised DA has its limitations. When

nly few labeled data in the target domain are available, using

he source and target labeled data to train parameters of models

ypically results in overfitting to the source distribution. In addi-

ion, the discrepancy-based approaches have been studied for years

nd produced more methods in many research works, whereas the

dversarial-based and reconstruction-based approaches are a rela-

ively new research topic but have recently been attracting more

ttention. 

.1. Homogeneousdomain adaptation 

.1.1. Discrepancy-based approaches 

Yosinski et al. [72] proved that transferable features learned by

eep networks have limitations due to fragile co-adaptation and

epresentation specificity and that fine-tuning can enhance gener-

lization performance (Fig. 4) . Fine-tuning (can also be viewed as

 discrepancy-based deep DA approach) is to train a base network

ith source data and then directly reuse the first n layers to con-

uct a target network. The remaining layers of the target network

re randomly initialized and trained with loss based on discrep-

ncy. During training, the first n layers of the target network can

e fine-tuned or frozen depending on the size of the target dataset

nd its similarity to the source dataset [73] . Some common rules

f thumb for navigating the 4 major scenarios are given in Table 4 .
• Class criterion 

The class criterion is the most basic training loss in deep DA.

fter pre-training the network with source data, the remaining lay-

rs of the target model use the class label information as a guide

o train the network. Hence, a small number of labeled samples

rom the target dataset is assumed to be available. 

Ideally, the class label information is given directly in super-

ised DA. Most work commonly uses the negative log-likelihood

f the ground truth class with softmax as their training loss, L =∑ N 
i =0 y i log ̂  y i ( ̂  y i are the softmax predictions of the model, which

epresent class probabilities) [26,27,30,74] . To extend this, Hinton

t al. [31] modified the softmax function to soft label loss: 

 i = 

exp ( z i /T ) ∑ 

j ( exp ( z j /T )) 
(1) 

here z i is the logit output computed for each class. T is a tem-

erature that is normally set to 1 in standard softmax, but it takes

 higher value to produce a softer probability distribution over

lasses. By using it, much of the information about the learned

unction that resides in the ratios of very small probabilities can

e obtained. For example, when recognizing digits, one version of

 may obtain a probability of 10 6 of being a 3 and 10 9 of be-

ng a 7; in other words, this version of 2 looks more similar to

 than 7. Inspired by Tzeng et al., [26] fine-tuned the network

y simultaneously minimizing the domain confusion loss (belong-

ng to adversarial-based approaches, which will be presented in

ection 4.1.2 ) and soft label loss. Using soft labels rather than hard

abels can preserve the relationships between classes across do-

ains. Gebru et al. [35] modified existing adaptation algorithms

ased on [26] and utilized soft label loss at the fine-grained class

evel L csof t and attribute level L asof t (Fig. 5) . 

In addition to softmax loss, there are other methods that can

e used as training loss to fine-tune the target model in super-

ised DA. Embedding metric learning in deep networks is another

ethod that can make the distance of samples from different do-

ains with the same labels be closer while those with different la-

els are far away. Based on this idea, [28] constructed the semantic

lignment loss and the separation loss accordingly. Deep transfer

etric learning is proposed by Hu et al. [30] , which applies the

arginal Fisher analysis criterion and MMD criterion (described in



140 M. Wang, W. Deng / Neurocomputing 312 (2018) 135–153 

Fig. 4. The average accuracy over the validation set for a network trained with different strategies. Baseline B: the network is trained on dataset B. (2) BnB: the first n layers 

are reused from baseline B and frozen. The higher layers are trained on dataset B. (3) BnB + : the same as BnB but where all layers are fine-tuned. (4) AnB: the first n layers 

are reused from the network trained on dataset A and frozen. The higher layers are trained on dataset B. (5) AnB + : the same as AnB but where all layers are fine-tuned 

[72] . 

Fig. 5. Deep DA by combining domain confusion loss and soft label loss [26] . 
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Statistic Criterion) to minimize their distribution difference: 

min J = S (M) 
c − αS (M) 

b 
+ βD 

(M) 
ts 

(
X 

s , X 

t 
)

+ γ
M ∑ 

m =1 

(∥∥W 

(m ) 
∥∥2 

F 
+ 

∥∥b (m ) 
∥∥2 

2 

) (2)

where α, β and γ are regularization parameters and W 

( m ) and

b ( m ) are the weights and biases of the mth layer of the network.

D 

(M) 
ts 

(
X 

s , X 

t 
)

is the MMD between representations of the source

and target domains. S c and S b define the intra-class compactness

and the interclass separability. 

However, what can we do if there is no class label informa-

tion in the target domain directly? As we all know, humans can

identify unseen classes given only a high-level description. For

instance, when provided the description ”tall brown animals with

long necks”, we are able to recognize giraffes. To imitate the abil-

ity of humans, [75] introduced high-level semantic attributes per

class. Assume that a c = (a c 
1 
, . . . , a c m 

) is the attribute representation

for class c , which has fixed-length binary values with m attributes

in all the classes. The classifiers provide estimates of p ( a m 

| x ) for

each attribute a m 

. In the test stage, each target class y obtains its

attribute vector a y in a deterministic way, i.e., p(a | y ) = [[ a = a y ]] .

By applying Bayes rule, p(y | a ) = 

p(y ) 
p( a y ) 

[[ a = a y ]] , the posterior of a
est class can be calculated as follows: 

p(y | x ) = 

∑ 

a ∈ { 0 , 1 } M 
p(y | a ) p(a | x ) = 

p(y ) 

p( a y ) 

M ∏ 

m =1 

p(a y m 

| x ) (3)

Gebru et al. [35] drew inspiration from these works and lever-

ged attributes to improve performance in the DA of fine-grained

ecognition. There are multiple independent softmax losses that si-

ultaneously perform attribute and class level to fine-tune the tar-

et model. To prevent the independent classifiers from obtaining

onflicting labels with attribute and class level, an attribute con-

istency loss is also implemented. 

Occasionally, when fine-tuning the network in unsupervised

A, a label of target data, which is called a pseudo label, can pre-

iminarily be obtained based on the maximum posterior probabil-

ty. Yan et al. [34] initialized the target model using the source

ata and then defined the class posterior probability p(y t 
j 
= c| x t 

j 
)

y the output of the target model. With p(y t 
j 
= c| x t 

j 
) , they as-

igned pseudo-label ̂ y t 
j 

to x t 
j 

by ̂ y t 
j 
= arg max 

c 
p(y t 

j 
= c| x t 

j 
) . In [29] ,

wo different networks assign pseudo-labels to unlabeled sam-

les, another network is trained by the samples to obtain target

iscriminative representations. The deep transfer network (DTN)

33] used some base classifiers, e.g., SVMs and MLPs, to obtain the

seudo labels for the target samples to estimate the conditional

istribution of the target samples and match both the marginal

nd the conditional distributions with the MMD criterion. When

asting the classifier adaptation into the residual learning frame-

ork, [32] used the pseudo label to build the conditional entropy

(D 

t , f t ) , which ensures that the target classifier f t fits the target-

pecific structures well. 

• Statistic criterion 

Although some discrepancy-based approaches search for

seudo labels, attribute labels or other substitutes to labeled

arget data, more work focuses on learning domain-invariant rep-

esentations via minimizing the domain distribution discrepancy

n unsupervised DA. 

MMD is an effective metric for comparing the distributions be-

ween two datasets by a kernel two-sample test [76] . Given two

istributions s and t , the MMD is defined as follows: 

 M D 

2 (s, t) = sup 

‖ φ‖ H ≤1 

∥∥E x s ∼s [ φ( x s )] − E x t ∼s [ φ( x t )] 
∥∥2 

H 

(4)

here φ represents the kernel function that maps the original data

o a reproducing kernel Hilbert space (RKHS) and ‖ φ‖ H 

≤ 1 defines

 set of functions in the unit ball of RKHS H. 
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Fig. 6. Different approaches with the MMD metric. (a) The deep adaptation network (DAN) architecture [38] , (b) the joint adaptation network (JAN) architecture [37] and (c) 

the residual transfer network (RTN) architecture [32] . 
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Based on the above, Ghifary et al. [40] proposed a model that

ntroduced the MMD metric in feedforward neural networks with

 single hidden layer. The MMD metric is computed between rep-

esentations of each domain to reduce the distribution mismatch

n the latent space. The empirical estimate of MMD is as follows:

 M D 

2 ( D s , D t ) = 

∥∥∥∥∥ 1 

M 

M ∑ 

i =1 

φ(x s i ) −
1 

N 

N ∑ 

j=1 

φ(x t j ) 

∥∥∥∥∥
2 

H 

(5)

Subsequently, Tzeng et al. [39] and Long et al. [38] extended

MD to a deep CNN model and achieved great success. The deep

omain confusion network (DDC) by Tzeng et al. [39] used two

NNs for the source and target domains with shared weights. The

etwork is optimized for classification loss in the source domain,

hile domain difference is measured by an adaptation layer with

he MMD metric. 

 = L C ( X 

L , y ) + λM M D 

2 ( X 

s X 

t ) (6)

here the hyperparameter λ is a penalty parameter. L C ( X 
L , y ) de-

otes classification loss on the available labeled data, X 

L , and the

round-truth labels, y. MMD 

2 ( X 

s X 

t ) denotes the distance between

he source and target data. DDC only adapts one layer of the net-

ork, resulting in a reduction in the transferability of multiple lay-

rs. Rather than using a single layer and linear MMD, Long et al.

38] proposed the deep adaptation network (DAN) that matches

he shift in marginal distributions across domains by adding multi-

le adaptation layers and exploring multiple kernels, assuming that

he conditional distributions remain unchanged (Fig. 6) . However,

his assumption is rather strong in practical applications; in other

ords, the source classifier cannot be directly used in the target

omain. To make it more generalized, a joint adaptation network

JAN) [37] aligns the shift in the joint distributions of input fea-

ures and output labels in multiple domain-specific layers based

n a joint maximum mean discrepancy (JMMD) criterion (Fig. 6) .

hang et al. [33] proposed DTN, where both the marginal and

he conditional distributions are matched based on MMD (Fig. 6) .

he shared feature extraction layer learns a subspace to match the

arginal distributions of the source and the target samples, and

he discrimination layer matches the conditional distributions by

lassifier transduction. In addition to adapting features using MMD,

esidual transfer networks (RTNs) [32] added a gated residual layer

or classifier adaptation. More recently, Yan et al. [34] proposed a

eighted MMD model that introduces an auxiliary weight for each

lass in the source domain when the class weights in the target

omain are not the same as those in the source domain. 
If φ is a characteristic kernel (i.e., Gaussian kernel or Laplace

ernel), MMD will compare all the orders of statistic moments.

n contrast to MMD, CORAL [77] learned a linear transforma-

ion that aligns the second-order statistics between domains. Sun

nd Saenko [41] extended CORAL to deep neural networks (deep

ORAL) with a nonlinear transformation. 

 CORAL = 

1 

4 d 2 
‖ 

C S − C T ‖ 

2 
F (7) 

here ‖ · ‖ 2 
F 

denotes the squared matrix Frobenius norm. C S and

 T denote the covariance matrices of the source and target data,

espectively. 

By the Taylor expansion of the Gaussian kernel, MMD can be

iewed as minimizing the distance between the weighted sums

f all raw moments [78] . The interpretation of MMD as moment

atching procedures motivated Zellinger et al. [79] to match the

igher-order moments of the domain distributions, which we call

entral moment discrepancy (CMD). An empirical estimate of the

MD metric for the domain discrepancy in the activation space

 a, b ] N is given by 

M D K ( X 

s , X 

t ) = 

1 

(b − a ) 

∥∥E( X 

s ) − E( X 

t ) 
∥∥

2 

+ 

K ∑ 

k =2 

1 

| b − a | k 
∥∥C k ( X 

s ) − C k ( X 

t ) 
∥∥

2 

(8) 

here C k (X ) = E( (x − E(X )) k is the vector of all kth -order sample

entral moments and E(X ) = 

1 
| X | 

∑ 

x ∈ X x is the empirical expecta-

ion. 

The association loss L assoc proposed by Haeusser [80] is an al-

ernative discrepancy measure, it enforces statistical associations

etween source and target data by making the two-step round-

rip probabilities P aba 
i j 

be similar to the uniform distribution over

he class labels. 

• Architecture criterion 

Some other methods optimize the architecture of the network

o minimize the distribution discrepancy. This adaptation behavior

an be achieved in most deep DA models, such as supervised and

nsupervised settings. 

Rozantsev et al. [47] considered that the weights in correspond-

ng layers are not shared but related by a weight regularizer r w 

( · )

o account for the differences between the two domains (Fig. 7) .

he weight regularizer r w 

( · ) can be expressed as the exponential

oss function: 

 w 

(θ s 
j , θ

t 
j ) = exp 

(∥∥θ s 
j − θ t 

j 

∥∥2 
)

− 1 (9) 
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Fig. 7. The two-stream architecture with related weight [47] . 
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where θ s 
j 

and θ t 
j 

denote the parameters of the jth layer of the

source and target models, respectively. To further relax this re-

striction, they allow the weights in one stream to undergo a linear

transformation: 

r w 

(θ s 
j , θ

t 
j ) = exp 

(∥∥a j θ
s 
j + b j − θ t 

j 

∥∥2 
)

− 1 (10)

where a j and b j are scalar parameters that encode the linear trans-

formation. The work of Shu et al. [81] is similar to [47] using

weakly parameter-shared layers. The penalty term � controls the

relatedness of parameters. 

� = 

L ∑ 

i =1 

(∥∥W 

(l) 
S 

− W 

(l) 
T 

∥∥2 

F 
+ 

∥∥b (l) 
S 

− b (l) 
T 

∥∥2 

F 

)
(11)

where { W 

(l) 
S 

, b (l) 
S 

} L 
l=1 

and { W 

(l) 
T 

, b (l) 
T 

} L 
l=1 

are the parameters of the

lth layer in the source and target domains, respectively. 

Li et al. [44] hypothesized that the class-related knowledge is

stored in the weight matrix, whereas domain-related knowledge is

represented by the statistics of the batch normalization (BN) layer

[82] . BN normalizes the mean and standard deviation for each in-

dividual feature channel such that each layer receives data from

a similar distribution, irrespective of whether it comes from the

source or the target domain. Therefore, Li et al. used BN to align

the distribution for recomputing the mean and standard deviation

in the target domain. 

BN( X 

t ) = λ

(
x − μ( X 

t ) 

σ ( X 

t ) 

)
+ β (12)

where λ and β are parameters learned from the target data and

μ( x ) and σ ( x ) are the mean and standard deviation computed

independently for each feature channel. Based on [44] , [83] en-

dowed BN layers with a set of alignment parameters which can be

learned automatically and can decide the degree of feature align-

ment required at different levels of the deep network. Further-

more, Ulyanov et al. [84] found that when replacing BN layers with

instance normalization (IN) layers, where μ( x ) and σ ( x ) are com-

puted independently for each channel and each sample, the per-

formance of DA can be further improved. 

Occasionally, neurons are not effective for all domains because

of the presence of domain biases. For example, when recognizing

people, the target domain typically contains one person centered

with minimal background clutter, whereas the source dataset con-

tains many people with more clutter. Thus, the neurons that cap-

ture the features of other people and clutter are useless. Domain-

guided dropout was proposed by Xiao et al. [48] to solve the

problem of multi-DA, and it mutes non-related neurons for each

domain. Rather than assigning dropout with a specific dropout

rate, it depends on the gain of the loss function of each neuron

on the domain sample when the neuron is removed. 

s i = L (g (x ) \ i ) − L (g(x )) (13)

where L is the softmax loss function and g ( x ) \ i is the feature vec-

tor after setting the response of the ith neuron to zero. In [85] ,

each source domain is assigned with different parameters, 
(i ) =

(0) + �(i ) , where 
(0) is a domain general model, and �( i ) is a
omain specific bias term. After the low rank parameterized CNNs

re trained, 
(0) can serve as the classifier for target domain. 

• Geometric criterion 

The geometric criterion mitigates the domain shift by integrat-

ng intermediate subspaces on a geodesic path from the source

o the target domains. A geodesic flow curve is constructed to

onnect the source and target domains on the Grassmannian. The

ource and target subspaces are points on a Grassmann manifold.

y sampling a fixed [86] or infinite [87] number of subspaces along

he geodesic, we can form the intermediate subspaces to help to

nd the correlations between domains. Then, both source and tar-

et data are projected to the obtained intermediate subspaces to

lign the distribution. 

Inspired by the intermediate representations on the geodesic

ath, Chopra et al. [50] proposed a model called deep learning for

A by interpolating between domains (DLID). DLID generates in-

ermediate datasets, starting with all the source data samples and

radually replacing source data with target data. Each dataset is

 single point on an interpolating path between the source and

arget domains. Once intermediate datasets are generated, a deep

onlinear feature extractor using the predictive sparse decomposi-

ion is trained in an unsupervised manner. 

.1.2. Adversarial-based approaches 

Recently, great success has been achieved by the GAN method

88] , which estimates generative models via an adversarial pro-

ess. GAN consists of two models: a generative model G that ex-

racts the data distribution and a discriminative model D that

istinguishes whether a sample is from G or training datasets by

redicting a binary label. The networks are trained on the label

rediction loss in a mini-max fashion: simultaneously optimizing

 to minimize the loss while also training D to maximize the prob-

bility of assigning the correct label: 

in G max D V (D, G ) = E x ∼p data (x ) [ log D (x )] 
+ E z∼p z (z) [ log (1 − D (G (z)))] 

(14)

In DA, this principle has been employed to ensure that the net-

ork cannot distinguish between the source and target domains.

zeng et al. [58] proposed a unified framework for adversarial-

ased approaches and summarized the existing approaches accord-

ng to whether to use a generator, which loss function to employ,

r whether to share weights across domains (Fig. 8) . In this pa-

er, we only categorize the adversarial-based approaches into two

ubsettings: generative models and non-generative models. 

• Generative models 

Synthetic target data with ground-truth annotations are an ap-

ealing alternative to address the problem of a lack of training

ata. First, with the help of source data, generators render un-

imited quantities of synthetic target data, which are paired with

ynthetic source data to share labels or appear as if they were

ampled from the target domain while maintaining labels, or

omething else. Then, synthetic data with labels are used to train
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Fig. 8. Generalized architecture for adversarial domain adaptation. Existing adver- 

sarial adaptation methods can be viewed as instantiations of a framework with dif- 

ferent choices regarding their properties [58] . 
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he target model as if no DA were required. Adversarial-based ap-

roaches with generative models are able to learn such a transfor-

ation in an unsupervised manner based on GAN. 

The core idea of CoGAN [51] is to generate synthetic target data

hat are paired with synthetic source ones (Fig. 9) . It consists of

 pair of GANs: GAN 1 for generating source data and GAN 2 for

enerating target data. The weights of the first few layers in the

enerative models and the last few layers in the discriminative

odels are tied. This weight-sharing constraint allows CoGAN to

chieve a domain-invariant feature space without correspondence

upervision. A trained CoGAN can adapt the input noise vector to

aired images that are from the two distributions and share the

abels. Therefore, the shared labels of synthetic target samples can

e used to train the target model. 
Fig. 9. The CoGAN ar

Fig. 10. The model that exploits GANs conditione
chitecture [51] . 

d on noise vector and source images [52] . 

More work focuses on generating synthetic data that are sim-

lar to the target data while maintaining annotations. Yoo et al.

89] transferred knowledge from the source domain to pixel-level

arget images with GANs. A domain discriminator ensures the in-

ariance of content to the source domain, and a real/fake dis-

riminator supervises the generator to produce similar images to

he target domain. Shrivastava et al. [90] developed a method for

imulated+unsupervised (S + U) learning that uses a combined ob-

ective of minimizing an adversarial loss and a self-regularization

oss, where the goal is to improve the realism of synthetic images

sing unlabeled real data. In contrast to other works in which the

enerator is conditioned only on a noise vector or source images,

ousmalis et al. [52] proposed a model that exploits GANs condi-

ioned on both (Fig. 10) . The classifier T is trained to predict class

abels of both source and synthetic images, while the discrimina-

or is trained to predict the domain labels of target and synthetic

mages. In addition, to expect synthetic images with similar fore-

rounds and different backgrounds from the same source images,

 content similarity is used that penalizes large differences be-

ween source and synthetic images for foreground pixels only by

 masked pairwise mean squared error [91] . The goal of the net-

ork is to learn G, D and T by solving the optimization problem:

in 

G,T 
max 

D 
V (D, G ) = αL d (D, G ) + βL t (T , G ) + γL c (G ) (15)

here α, β , and γ are parameters that control the trade-off be-

ween the losses. L d , L t and L c are the adversarial loss, softmax

oss and content-similarity loss, respectively. 

• Non-generative models 

The key of deep DA is learning domain-invariant representa-

ions from source and target samples. With these representations,
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Fig. 11. The domain-adversarial neural network (DANN) architecture [55] . 

Fig. 12. The adversarial discriminativedomain adaptation (ADDA) architecture [58] . 
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the distribution of both domains can be similar enough such that

the classifier is fooled and can be directly used in the target do-

main even if it is trained on source samples. Therefore, whether

the representations are domain-confused or not is crucial to trans-

ferring knowledge. Inspired by GAN, domain confusion loss, which

is produced by the discriminator, is introduced to improve the per-

formance of deep DA without generators. 

The domain-adversarial neural network (DANN) [55] integrates

a gradient reversal layer (GRL) into the standard architecture to en-

sure that the feature distributions over the two domains are made

similar (Fig. 11) . The network consists of shared feature extraction

layers and two classifiers. DANN minimizes the domain confusion

loss (for all samples) and label prediction loss (for source samples)

while maximizing domain confusion loss via the use of the GRL.

In contrast to the above methods, the adversarial discriminative

domain adaptation (ADDA) [58] considers independent source and

target mappings by untying the weights, and the parameters of the

target model are initialized by the pre-trained source one (Fig. 12) .

This is more flexible because of allowing more domain-specific fea-

ture extractions to be learned. ADDA minimizes the source and tar-

get representation distances through iteratively minimizing these

following functions, which is most similar to the original GAN: 

min 

M 

s ,C 
L cls ( X 

s , Y s ) = −E ( x s , y s ) ∼( X s , Y s ) 

K ∑ 

k =1 

1 [ k = y s ] log C( M 

s ( x s )) 

min D L adv D ( X 

s , X 

t , M 

s , M 

t ) = −E ( x s ) ∼( X s ) [ log D ( M 

s ( x s ))] 
−E ( x t ) ∼( X t ) [ log (1 − D ( M 

t ( x t )))] 

min 

M 

s , M 

t 
L adv M 

( M 

s , M 

t ) = −E ( x t ) ∼( X t ) [ log D ( M 

t ( x t ))] (16)

where the mappings M 

s and M 

t are learned from the source and

target data, X 

s and X 

t . C represents a classifier working on the

source domain. The first classification loss function L cls is opti-

mized by training the source model using the labeled source data.

The second function L is minimized to train the discriminator,
adv D 
hile the third function L adv M 

is learning a representation that is

omain invariant. 

Tzeng et al. [26] proposed adding an additional domain classi-

cation layer that performs binary domain classification and de-

igned a domain confusion loss to encourage its prediction to be

s close as possible to a uniform distribution over binary labels.

nlike previous methods that match the entire source and tar-

et domains, Cao et al. introduced a selective adversarial network

SAN) [92] to address partial transfer learning from large domains

o small domains, which assumes that the target label space is a

ubspace of the source label space. It simultaneously avoids nega-

ive transfer by filtering out outlier source classes, and it promotes

ositive transfer by matching the data distributions in the shared

abel space via splitting the domain discriminator into many class-

ise domain discriminators. Motiian et al. [93] encoded domain la-

els and class labels to produce four groups of pairs, and replaced

he typical binary adversarial discriminator by a four-class discrim-

nator. Volpi et al. [94] trained a feature generator (S) to perform

ata augmentation in the source feature space and obtained a do-

ain invariant feature through playing a minimax game against

eatures from S. 

Rather than using discriminator to classify domain label, some

apers make some other explorations. Inspired by Wasserstein

AN [95] , Shen et al. [96] utilized discriminator to estimate empir-

cal Wasserstein distance between the source and target samples

nd optimized the feature extractor network to minimize the dis-

ance in an adversarial manner. In [97] , two classifiers are treated

s discriminators and are trained to maximize the discrepancy to

etect target samples outside the support of the source, while a

eature extractor is trained to minimize the discrepancy by gener-

ting target features near the support. 

.1.3. Reconstruction-based approaches 

In DA, the data reconstruction of source or target samples is

n auxiliary task that simultaneously focuses on creating a shared

epresentation between the two domains and keeping the individ-

al characteristics of each domain. 
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Fig. 13. The deep reconstruction classification network (DRCN) architecture [60] . 
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• Encoder–decoder reconstruction 

The basic autoencoder framework [98] is a feedforward neural

etwork that includes the encoding and decoding processes. The

utoencoder first encodes an input to some hidden representation,

nd then it decodes this hidden representation back to a recon-

tructed version. The DA approaches based on encoder–decoder re-

onstruction typically learn the domain-invariant representation by

 shared encoder and maintain the domain-special representation

y a reconstruction loss in the source and target domains. 

Glorot et al. [99] proposed extracting a high-level representa-

ion based on stacked denoising autoencoders (SDA) [16] . By re-

onstructing the union of data from various domains with the

ame network, the high-level representations can represent both

he source and target domain data. Thus, a linear classifier that is

rained on the labeled data of the source domain can make pre-

ictions on the target domain data with these representations. De-

pite their remarkable results, SDAs are limited by their high com-

utational cost and lack of scalability to high-dimensional features.

o address these crucial limitations, Tsai and Chien [100] proposed

he marginalized SDA (mSDA), which marginalizes noise with lin-

ar denoisers; thus, parameters can be computed in closed-form

nd do not require stochastic gradient descent. 

The deep reconstruction classification network (DRCN) pro-

osed in [60] learns a shared encoding representation that pro-

ides useful information for cross-domain object recognition (Fig.

3) . DRCN is a CNN architecture that combines two pipelines with

 shared encoder. After a representation is provided by the en-

oder, the first pipeline, which is a CNN, works for supervised clas-

ification with source labels, whereas the second pipeline, which is

 deconvolutional network, optimizes for unsupervised reconstruc-

ion with target data. 

in λL c ({ θenc , θlab } ) + (1 − λ) L r ({ θenc , θdec } ) (17)

here λ is a hyper-parameter that controls the trade-off between

lassification and reconstruction. θ enc , θdec and θ lab denote the pa-

ameters of the encoder, decoder and source classifier, respectively.

 c is cross-entropy loss for classification, and L r is squared loss

 x − f r (x ) ‖ 2 2 for reconstruction in which f r ( x ) is the reconstruc-

ion of x . 

Domain separation networks (DSNs) [59] explicitly and jointly

odel both private and shared components of the domain repre-

entations. A shared-weight encoder learns to capture shared rep-

esentations, while a private encoder is used for domain-specific

omponents in each domain. Additionally, a shared decoder learns

o reconstruct the input samples by both the private and shared

epresentations. Then, a classifier is trained on the shared repre-

entation. By partitioning the space in such a manner, the shared
epresentations will not be influenced by domain-specific repre-

entations such that a better transfer ability can be obtained. Find-

ng that the separation loss is simple and that the private features

re only used for reconstruction in DSNs, [101] reinforced them by

ncorporating a hybrid adversarial learning in a separation network

nd an adaptation network. 

Zhuang et al. [43] proposed transfer learning with deep au-

oencoders (TLDA), which consists of two encoding layers. The dis-

ance in distributions between domains is minimized with KL di-

ergence in the embedding encoding layer, and label information

f the source domain is encoded using a softmax loss in the label

ncoding layer. Ghifary et al. [61] extended the autoencoder into

 model that jointly learns two types of data-reconstruction tasks

aken from related domains: one is self-domain reconstruction, and

he other is between-domain reconstruction. 

• Adversarial reconstruction 

Dual learning was first proposed by He et al. [102] to reduce the

equirement of labeled data in natural language processing. Dual

earning trains two “opposite” language translators, e.g., A to B and

 to A. The two translators represent a primal-dual pair that eval-

ates how likely the translated sentences belong to the targeted

anguage, and the closed loop measures the disparity between the

econstructed and the original ones. Inspired by dual learning, ad-

ersarial reconstruction is adopted in deep DA with the help of

ual GANs. 

Zhu et al. [63] proposed a cycle GAN that can translate the char-

cteristics of one image domain into the other in the absence of

ny paired training examples (Fig. 14) . Compared to dual learning,

ycle GAN uses two generators rather than translators, which learn

 mapping G : X → Y and an inverse mapping F : Y → X . Two dis-

riminators, D X and D Y , measure how realistic the generated image

s ( G ( X ) ≈ Y or G ( Y ) ≈ X ) by an adversarial loss and how well the

riginal input is reconstructed after a sequence of two generations

 F ( G ( X )) ≈ X or G ( F ( Y )) ≈ Y ) by a cycle consistency loss (reconstruc-

ion loss). Thus, the distribution of images from G ( X ) (or F ( Y )) is

ndistinguishable from the distribution Y (or X ). 

 GAN (G, D Y , X, Y ) = E y ∼p data (y ) [ log D Y (y )] 
+ E x ∼p data (x ) [ log (1 − D Y (G (x )))] 

 cyc (G, F ) = E x ∼data (x ) [ ‖ 

F (G (x )) − x ‖ 1 ] 
+ E y ∼data (y ) [ ‖ 

G (F (y )) − y ‖ 1 ] 
(18) 

here L GAN is the adversarial loss produced by discriminator D Y 

ith mapping function G : X → Y . L cyc is the reconstruction loss us-

ng L1 norm. 

The dual GAN [62] and the disco GAN [64] were proposed at

he same time, where the core idea is similar to cycle GAN. In dual
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Fig. 14. The cycle GAN architecture [63] . 
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GAN, the generator is configured with skip connections between

mirrored downsampling and upsampling layers [53,103] , making it

a U-shaped net to share low-level information (e.g., object shapes,

textures, clutter, and so forth). For discriminators, the Markovian

patch-GAN [104] architecture is employed to capture local high-

frequency information. In disco GAN, various forms of distance

functions, such as mean-square error (MSE), cosine distance, and

hinge loss, can be used as the reconstruction loss, and the network

is applied to translate images, changing specified attributes includ-

ing hair color, gender and orientation while maintaining all other

components. 

4.1.4. Hybrid approaches 

To obtain better performance, some of the aforementioned

methods have been used simultaneously. Tzeng et al. [26] com-

bined a domain confusion loss and a soft label loss, while

[32] used both statistic (MMD) and architecture criteria (adapt

classifier by residual function) for unsupervised DA. Yan et al.

[34] introduced class-specific auxiliary weights assigned by the

pseudo-labels into the original MMD. In DSNs [59] , encoder–

decoder reconstruction approaches separate representations into

private and shared representations, while the MMD criterion or do-

main confusion loss is helpful to make the shared representations

similar and soft subspace orthogonality constraints ensure dissim-

ilarity between the private and shared representations. Rozantsev

et al. [47] used the MMD between the learned source and target

representations and also allowed the weights of the corresponding

layers to differ. Zhuang et al. [43] learned domain-invariant repre-

sentations by encoder–decoder reconstruction approaches and the

KL divergence. 

4.2. Heterogeneous domain adaptation 

In heterogeneous DA, the feature spaces of the source and tar-

get domains are not the same, Xs � = Xt , and the dimensions of

the feature spaces may also differ. According to the divergence

of feature spaces, heterogeneous DA can be further divided into

two scenarios. In one scenario, the source and target domain both

contain images, and the divergence of feature spaces is mainly

caused by different sensory devices (e.g., visual light (VIS) vs. near-

infrared (NIR) or RGB vs. depth) and different styles of images (e.g.,

sketches vs. photos). In the other scenario, there are different types

of media in source and target domain (e.g., text vs. image and lan-

guage vs. image). Obviously, the cross-domain gap of the second

scenario is much larger. 

Most heterogeneous DA with shallow methods fall into two

categories: symmetric transformation and asymmetric transforma-

tion. The symmetric transformation learns feature transformations

to project the source and target features onto a common sub-

space. Heterogeneous feature augmentation (HFA) [105] first trans-

formed the source and target data into a common subspace using

projection matrices P and Q respectively, then proposed two new

feature mapping functions, ϕ s ( x 
s ) = 

[
P x s , x s , 0 d t 

]T 
and ϕ t 

(
x t 

)
=

Qx t , 0 d s , x 
t 
]T 

, to augment the transformed data with their original

eatures and zeros. These projection matrices are found using stan-

ard SVM with hinge loss in both the linear and nonlinear cases

nd an alternating optimization algorithm is proposed to simulta-

eously solve the dual SVM and to find the optimal transforma-

ions. Wang and Mahadevan [106] treated each input domain as a

anifold which is represented by a Laplacian matrix, and used la-

els rather than correspondences to align the manifolds. The asym-

etric transformation transforms one of source and target features

o align with the other. Zhou et al. [107] proposed a sparse and

lass-invariant feature transformation matrix to map the weight

ector of classifiers learned from the source domain to the target

omain. The asymmetric regularized cross-domain transfer (ARC-

) [108] used asymmetric, non-linear transformations learned in

aussian RBF kernel space to map the target data to the source do-

ain. Extended from [109] , ARC-t performed asymmetric transfor-

ation based on metric learning, and transfer knowledge between

omains with different dimensions through changes of the regular-

zer. Since we focus on deep DA, we refer the interested readers to

20] , which summarizes shallow approaches of heterogeneous DA. 

However, as for deep methods, there is not much work focused

n heterogeneous DA so far. The special and effective methods of

eterogeneous deep DA have not been proposed, and heteroge-

eous deep DA is still performed similar to some approaches of

omogeneous DA. 

.2.1. Discrepancy-based approach 

In discrepancy-based approaches, the network generally shares

r reuses the first n layers between the source and target domains,

hich limits the feature spaces of the input to the same dimen-

ion. However, in heterogeneous DA, the dimensions of the feature

paces of source domain may differ from those of target domain. 

In first scenario of heterogeneous DA, the images in different

omains can be directly resized into the same dimensions, so the

lass Criterion and Statistic Criterion are still effective and are

ainly used. For example, given an RGB image and its paired depth

mage, Gupta et al. [110] used the mid-level representation learned

y CNNs as a supervisory signal to re-train a CNN on depth images.

o transform an RGB object detector into a RGB-D detector with-

ut needing complete RGB-D data, Hoffman et al. [111] first trained

n RGB network using labeled RGB data from all categories and

netuned the network with labeled depth data from partial cate-

ories, then combined mid-level RGB and depth representations at

c6 to incorporate both modalities into the final object class pre-

iction. Mittal et al. [112] first trained the network using large face

atabase of photos and then finetuned it using small database of

omposite sketches; Liu et al. [113] transferred the VIS deep net-

orks to the NIR domain in the same way. 

In second scenario, the features of different media can not be

irectly resized into the same dimensions. Therefore, discrepancy-

ased methods fail to work without extra process. Shu et al.

81] proposed weakly shared DTNs to transfer labeled information

cross heterogeneous domains, particularly from the text domain
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Fig. 15. The StackGAN architecture [119] . 
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o the image domain. DTNs take paired data, such as text and im-

ge, as input to two SAEs, followed by weakly parameter-shared

etwork layers at the top. Chen et al. [114] proposed transfer neu-

al trees (TNTs), which consist of two stream networks to learn a

omain-invariant feature representation for each modality. Then, a

ransfer neural decision forest (Transfer-NDF) [115,116] is used with

tochastic pruning for adapting representative neurons in the pre-

iction layer. 

.2.2. Adversarial-based approach 

Using Generative Models can generate the heterogeneous tar-

et data while transferring some information of source domain to

hem. Taigman et al. [117] employed a compound loss function that

onsists of a multiclass GAN loss, a regularizing component and an

-constancy component to transfer unlabeled face photos to emoji

mages. To generate images for birds and flowers based on text,

eed et al. [118] trained a GAN conditioned on text features en-

oded by a hybrid character-level convolutional-recurrent neural

etwork. Zhang et al. [119] proposed stacked generative adversarial

etworks (StackGAN) with conditioning augmentation for synthe-

izing photo-realistic images from text (Fig. 15) . It decomposes the

ynthesis problem into several sketch-refinement processes. Stage-

 GAN sketches the primitive shape and basic colors of the object

o yield low-resolution image, and Stage-II GAN completes details

f the object to produce a high-resolution photo-realistic image. 

.2.3. Reconstruction-based approach 

The Adversarial Reconstruction can be used in heterogeneous

A as well. For example, the cycle GAN [63] , dual GAN [62] and

isco GAN [64] used two generators, G A and G B , to generate

ketches from photos and photos from sketches, respectively. Based

n cycle GAN [63] , Wang et al. [120] proposed a multi-adversarial

etwork to avoid artifacts of facial photo-sketch synthesis by lever-

ging the implicit presence of feature maps of different resolutions

n the generator subnetwork. 

. Multi-step domain adaptation 

For multi-step DA, the selection of the intermediate domain is

roblem specific, and different problems may have different strate-

ies. 

.1. Hand-crafted approaches 

Occasionally, the intermediate domain can be selected by ex-

erience, that is, it is decided in advance. For example, when the

ource domain is image data and the target domain is composed
f text data, some annotated images will clearly be crawled as in-

ermediate domain data. 

With the common sense that nighttime light intensities can be

sed as a proxy for economic activity, Xie et al. [65] transferred

nowledge from daytime satellite imagery to poverty prediction

ith the help of some nighttime light intensity information as an

ntermediate domain. 

.2. Instance-based approaches 

In other problems where there are many candidate intermedi-

te domains, some automatic selection criterion should be consid-

red. Similar to the instance-transfer approaches proposed by Pan

nd Yang [18] , because the samples of the source domain cannot

e used directly, the mixture of certain parts of the source and tar-

et data can be useful for constructing the intermediate domain. 

Tan et al. [25] proposed distant domain transfer learning

DDTL), where long-distance domains fail to transfer knowledge

y only one intermediate domain but can be related via multi-

le intermediate domains. DDTL gradually selects unlabeled data

rom the intermediate domains by minimizing reconstruction er-

ors on the selected instances in the source and intermediate do-

ains and all the instances in the target domain simultaneously.

ith removal of the unrelated source data, the selected interme-

iate domains gradually become closer to the target domain from

he source domain: 

 1 ( f e , f d , v S , v T ) = 

1 

n S 

n S ∑ 

i =1 

v i S 
∥∥ ˆ x i S − x i S 

∥∥2 

2 

+ 

1 

n I 

n I ∑ 

i =1 

v i I 
∥∥ ˆ x i I − x i I 

∥∥2 

2 

+ 

1 

n T 

n T ∑ 

i =1 

∥∥ ˆ x i T − x i T 

∥∥2 

2 
+ R ( v S , v T ) 

(19) 

here ˆ x i 
S 
, ˆ x i 

T 
and ˆ x i 

I 
are reconstructions of source data S i , target

ata T i and intermediate data I i based on the autoencoder, respec-

ively, and f e and f d are the parameters of the encoder and de-

oder, respectively. v S = (v 1 
S 
, . . . , v n S 

S 
) 
� 

and v I = (v 1 
I 
, . . . , v n I 

I 
) 
� 
, v i 

S 
,

 

i 
I 
∈ 0 , 1 are selection indicators for the ith source and intermediate 

nstance, respectively. R ( v S , v T ) is a regularization term that avoids

ll values of v S and v I being zero. 

The DLID model [50] mentioned in Section 4.1.1 (Geometric Cri-

erion) constructs the intermediate domains with a subset of the

ource and target domains, where source samples are gradually re-

laced by target samples. 
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Fig. 16. The progressive network architecture [66] . 
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5.3. Representation-based approaches 

Representation-based approaches freeze the previously trained

network and use their intermediate representations as input to the

new network. Rusu et al. [66] introduced progressive networks that

have the ability to accumulate and transfer knowledge to new do-

mains over a sequence of experiences (Fig. 16) . To avoid the tar-

get model losing its ability to solve the source domain, they con-

structed a new neural network for each domain, while transfer is

enabled via lateral connections to features of previously learned

networks. In the process, the parameters in the latest network are

frozen to remember knowledge of intermediate domains. 

6. Application of deep domain adaptation 

Deep DA techniques have recently been successfully applied in

many real-world applications, including image classification, ob-

ject recognition, face recognition, object detection, style transla-

tion, and so forth. In this section, we present different application

examples using various visual deep DA methods. Because the infor-

mation of commonly used datasets for evaluating the performance

is provided in [22] in detail, we do not introduce it in this paper. 

6.1. Image classification 

Because image classification is a basic task of computer vision

applications, most of the algorithms mentioned above were origi-

nally proposed to solve such problems. Therefore, we do not dis-

cuss this application repeatedly, but we show how much benefit

deep DA methods for image classification can bring. Because dif-

ferent papers often use different parameters, experimental proto-

cols and tuning strategies in the preprocessing steps, it is quite

difficult to perform a fair comparison among all the methods di-

rectly. Thus, similar to the work of Pan and Yang [18] , we show

the comparison results between the proposed deep DA methods

and non-adaptation methods using only deep networks. A list of

simple experiments taken from some published deep DA papers

are presented in Table 5 . 

In [37] , [79] , and [26] , the authors used the Office-31 dataset 1 

as one of the evaluation data sets, as shown in Fig. 1 (a). The Of-
1 https://cs.stanford.edu/ ∼jhoffman/domainadapt/ . 
ce dataset is a computer vision classification data set with images

rom three distinct domains: Amazon (A), DSLR (D), and Webcam

W). The largest domain, Amazon, has 2817 labeled images and its

orresponding 31 classes, which consist of objects commonly en-

ountered in office settings. By using this dataset, previous works

an show the performance of methods across all six possible DA

asks. Long et al. [37] showed comparison experiments among the

tandard AlexNet [8] , the DANN method [55] , and the MMD algo-

ithm and its variations, such as DDC [39] , DAN [38] , JAN [37] and

TN [32] . Zellinger et al. [79] evaluated their proposed CMD al-

orithm in comparison to other discrepancy-based methods (DDC,

eep CROAL [41] , DLID [50] , AdaBN [44] ) and the adversarial-based

ethod DANN. Tzeng et al. [26] proposed an algorithm combining

oft label loss and domain confusion loss, and they also compared

hem with DANN and DLID under a supervised DA setting. 

In [58] , MNIST 2 (M), USPS 3 (U), and SVHN 

4 (S) digit datasets

shown in Fig. 1 (b)) are used for a cross-domain hand-written digit

ecognition task, and the experiment showed the comparison re-

ults on some adversarial-based methods, such as DANN, CoGAN

51] and ADDA [58] , where the baseline is VGG-16 [12] . 

.2. Face recognition 

The performance of face recognition significantly degrades

hen there are variations in the test images that are not present

n the training images. The dataset shift can be caused by poses,

esolution, illuminations, expressions, and modality. Kan et al.

121] proposed a bi-shifting auto-encoder network (BAE) for face

ecognition across view angle, ethnicity, and imaging sensor. In

AE, source domain samples are shifted to the target domain, and

parse reconstruction is used with several local neighbors from

he target domain to ensure its correction, and vice versa. Sin-

le sample per person domain adaptation network (SSPP-DAN) in

122] generates synthetic images with varying poses to increase

he number of samples in the source domain and bridges the gap

etween the synthetic and source domains by adversarial train-

ng with a GRL in real-world face recognition (Fig. 17) . Sohn et al.

1] improved the performance of video face recognition by using

n adversarial-based approach with large-scale unlabeled videos,

abeled still images and synthesized images. Considering that age

ariations are difficult problems for smile detection and that net-

orks trained on the current benchmarks do not perform well

n young children, Xia et al. [123] applied DAN [38] and JAN

37] (mentioned in Section 4.1.1 ) to two baseline deep models, i.e.,

lexNet and ResNet, to transfer the knowledge from adults to in-

ants. 

.3. Object detection 

Recent advances in object detection are driven by region-based

onvolutional neural networks (R-CNNs [10] , fast R-CNNs [124] and

aster R-CNNs [125] ). They are composed of a window selection

echanism and classifiers that are pre-trained labeled bounding

oxes by using the features extracted from CNNs. At test time, the

lassifier decides whether a region obtained by sliding windows

ontains the object. Although the R-CNN algorithm is effective, a

arge amount of bounding box labeled data is required to train

ach detection category. To solve the problem of lacking labeled

ata, considering the window selection mechanism as being do-

ain independent, deep DA methods can be used in classifiers to

dapt to the target domain. 
2 http://yann.lecun.com/exdb/mnist/ . 
3 http://statweb.stanford.edu/ ∼tibs/ElemStatLearn/data.html . 
4 http://ufldl.stanford.edu/housenumbers/ . 

https://cs.stanford.edu/~jhoffman/domainadapt/
http://yann.lecun.com/exdb/mnist/
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://ufldl.stanford.edu/housenumbers/
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Table 5 

Comparison between transfer learning and non-adaptation learning methods. 

Data set (reference) Source vs. Target Baselines Deep domain adaptation methods 

AlexNet DDC DAN RTN JAN DANN 

A vs. W 61.6 ± 0.5 61.8 ± 0.4 68.5 73.3 ± 0.3 75.2 ± 0.4 73.0 ± 0.5 

D vs. W 95.4 ± 0.3 95.0 ± 0.5 96.0 ± 0.3 96.8 ± 0.2 96.6 ± 0.2 96.4 ± 0.3 

Office-31 Dataset W vs. D 99.0 ± 0.2 98.5 ± 0.4 99.0 ± 0.3 99.6 ± 0.1 99.6 ± 0.1 99.2 ± 0.3 

ACC (unit:%) [37] A vs. D 63.8 ± 0.5 64.4 ± 0.3 67.0 ± 0.4 71.0 ± 0.2 72.8 ± 0.3 72.3 ± 0.3 

D vs. A 51.1 ± 0.6 52.1 ± 0.6 54.0 ± 0.5 50.5 ± 0.3 57.5 ± 0.2 53.4 ± 0.4 

W vs. A 49.8 ± 0.4 52.2 ± 0.4 53.1 ± 0.5 51.0 ± 0.1 56.3 ± 0.2 51.2 ± 0.5 

Avg 70.1 70.6 72.9 73.7 76.3 74.3 

AlexNet Deep CORAL CMD DLID AdaBN DANN 

A vs. W 61.6 66.4 77.0 ± 0.6 51.9 74.2 73 

D vs. W 95.4 95.7 96.3 ± 0.4 78.2 95.7 96.4 

Office-31 Dataset W vs. D 99.0 99.2 99.2 ± 0.2 89.9 99.8 99.2 

ACC (unit:%) [79] A vs. D 63.8 66.8 79.6 ± 0.6 – 73.1 –

D vs. A 51.1 52.8 63.8 ± 0.7 – 59.8 –

W vs. A 49.8 51.5 63.3 ± 0.6 – 57.4 –

Avg 70.1 72.1 79.9 – 76.7 –

AlexNet DLID DANN Soft Labels Domain Confusion Confusion + Soft 

A vs. W 56.5 ± 0.3 51.9 53.6 ± 0.2 82.7 ± 0.7 82.8 ± 0.9 82.7 ± 0.8 

D vs. W 92.4 ± 0.3 78.2 71.2 ± 0.0 95.9 ± 0.6 95.6 ± 0.4 95.7 ± 0.5 

Office-31 Dataset W vs. D 93.6 ± 0.2 89.9 83.5 ± 0.0 98.3 ± 0.3 97.5 ± 0.2 97.6 ± 0.2 

ACC (unit:%) [26] A vs. D 64.6 ± 0.4 – – 84.9 ± 1.2 85.9 ± 1.1 86.1 ± 1.2 

D vs. A 47.6 ± 0.1 – – 66.0 ± 0.5 66.2 ± 0.4 66.2 ± 0.3 

W vs. A 42.7 ± 0.1 – – 65.2 ± 0.6 64.9 ± 0.5 65.0 ± 0.5 

Avg 66.2 – – 82.17 82.13 82.22 

MNIST, USPS, VGG-16 DANN CoGAN ADDA 

and SVHN M vs. U 75.2 ± 1.6 77.1 ± 1.8 91.2 ± 0.8 89.4 ± 0.2 

digits datasets U vs. M 57.1 ± 1.7 73.0 ± 2.0 89.1 ± 0.8 90.1 ± 0.8 

ACC (unit:%) [58] S vs. M 60.1 ± 1.1 73.9 – 76.0 ± 1.8 

Fig. 17. The single sample per person domain adaptation network (SSPP-DAN) architecture [122] . 
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Because R-CNNs train classifiers on regions just like classifi-

ation, weak labeled data (such as image-level class labels) are

irectly useful for the detector. Most works learn the detector

ith limited bounding box labeled data and massive weak la-

eled data. The large-scale detection through adaptation (LSDA)

126] trains a classification layer for the target domain and then

ses a pre-trained source model along with output layer adapta-

ion techniques to update the target classification parameters di-

ectly. Rochan and Wang [127] used word vectors to establish the

emantic relatedness between weak labeled source objects and tar-

et objects and then transferred the bounding box labeled informa-

ion from source objects to target objects based on their related-

ess. Extending [126] and [127] , Tang et al. [128] transferred visual

based on the LSDA model) and semantic similarity (based on work

ectors) for training an object detector on weak labeled category.

hen et al. [129] incorporated both an image-level and an instance-

evel adaptation component into faster R-CNN and minimized the

omain discrepancy based on adversarial training. By using bound-

ng box labeled data in a source domain and weak labeled data

n a target domain, [130] progressively fine-tuned the pre-trained

odel with domain-transfer samples and pseudo-labeling samples.
.4. Semantic segmentation 

Fully convolutional network models (FCNs) for dense predic-

ion have proven to be successful for evaluating semantic seg-

entation, but their performance will also degrade under domain

hifts. Therefore, some work has also explored using weak labels

o improve the performance of semantic segmentation. Hong et al.

131] used a novel encoder–decoder architecture with attention

odel by transferring weak class labeled knowledge in the source

omain, while [132,133] transferred weak object location knowl-

dge. 

Much attention has also been paid to deep unsupervised DA

n semantic segmentation. Hoffman et al. [134] first introduced

t, in which global domain alignment is performed using FCNs

ith adversarial-based training, while transferring spatial layout is

chieved by leveraging class-aware constrained multiple instance

oss (Fig. 18) . Zhang et al. [135] enhanced the segmentation per-

ormance on real images with the help of virtual ones. It uses the

lobal label distribution loss of the images and local label distri-

ution loss of the landmark superpixels in the target domain to

ffectively regularize the fine-tuning of the semantic segmenta-
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Fig. 18. The architecture of pixel-level adversarial and constraint-based adaptation 

[134] . 
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tion network. Chen et al. [136] proposed a framework for cross-

city semantic segmentation. The framework assigns pseudo labels

to pixels/grids in the target domain and jointly utilizes global and

class-wise alignment by domain adversarial learning to minimize

domain shift. In [137] , a target guided distillation module adapts

the style from the real images by imitating the pre-trained source

network, and a spatial-aware adaptation module leverages the in-

trinsic spatial structure to reduce the domain divergence. Rather

than operating a simple adversarial objective on the feature space,

[138] used a GAN to address domain shift in which a generator

projects the features to the image space and a discriminator oper-

ates on this projected image space. 

6.5. Image-to-image translation 

Image-to-image translation has recently achieved great success

with deep DA, and it has been applied to various tasks, such as

style transferring. Specially, when the feature spaces of source and

target images are not the same, image-to-image translation should

be performed by heterogeneous DA. 

More approaches of image-to-image translation use a dataset

of paired images and incorporate a DA algorithm into generative

networks. Isola et al. [53] proposed the pix2pix framework, which

uses a conditional GAN to learn a mapping from source to target

images. Tzeng et al. [56] utilized domain confusion loss and pair-

wise loss to adapt from simulation to real-world data in a PR2

robot. However, several other methods also address the unpaired

setting, such as CoGAN [51] , cycle GAN [63] , dual GAN [62] and

disco GAN [64] . 

Matching the statistical distribution by fine-tuning a deep net-

work is another way to achieve image-to-image translation. Gatys

et al. [139] fine-tuned the CNN to achieve DA by the total loss,

which is a linear combination between the content and the style

loss, such that the target image is rendered in the style of the

source image maintaining the content. The content loss minimizes

the mean squared difference of the feature representation between

the original image and generated image in higher layers, while the

style loss minimizes the element-wise mean squared difference be-

tween the Gram matrix of them on each layer. [46] demonstrated

that matching the Gram matrices of feature maps is equivalent

to minimizing the MMD. Rather than MMD, Li et al. [42] pro-

posed a deep generative correlation alignment network (DGCAN)

that bridges the domain discrepancy between CAD synthetic and
eal images by applying the content and CORAL losses to different

ayers. 

.6. Person re-identification 

In the community, person re-identification (re-ID) has become

ncreasingly popular. When given video sequences of a person, per-

on re-ID recognizes whether this person has been in another cam-

ra to compensate for the limitations of fixed devices. Recently,

eep DA methods have been used in re-ID when models trained on

ne dataset are directly used on another. Xiao et al. [48] proposed

he domain-guided dropout algorithm to discard useless neurons

or re-identifying persons on multiple datasets simultaneously. In-

pired by cycle GAN and Siamese network, the similarity preserv-

ng generative adversarial network (SPGAN) [140] translated the la-

eled source image to the target domain, preserving self similarity

nd domain-dissimilarity in an unsupervised manner, and then it

rains re-ID models with the translated images using supervised

eature learning methods. 

.7. Image captioning 

Recently, image captioning, which automatically describes an

mage with a natural sentence, has been an emerging challenge in

omputer vision and natural language processing. Due to lacking of

aired image-sentence training data, DA leverages different types

f data in other source domains to tackle this challenge. Chen et al.

141] proposed a novel adversarial training procedure (captioner

.s. critics) for cross-domain image captioning using paired source

ata and unpaired target data. One captioner adapts the sentence

tyle from source to target domain, whereas two critics, namely

omain critic and multi-modal critic, aim at distinguishing them.

hao et al. [142] fine-tuned the pre-trained source model on lim-

ted data in the target domain via a dual learning mechanism. 

. Conclusion 

In a broad sense, deep DA is utilizing deep networks to enhance

he performance of DA, such as shallow DA methods with features

xtracted by deep networks. In a narrow sense, deep DA is based

n deep learning architectures designed for DA and optimized by

ack propagation. In this survey paper, we focus on this narrow

efinition, and we have reviewed deep DA techniques on visual

ategorization tasks. 

Deep DA is classified as homogeneous DA and heterogeneous

A, and it can be further divided into supervised, semi-supervised

nd unsupervised settings. The first setting is the simplest but is

enerally limited due to the need for labeled data; thus, most pre-

ious works focused on unsupervised cases. Semi-supervised deep

A is a hybrid method that combines the methods of the super-

ised and unsupervised settings. 

Furthermore, the approaches of deep DA can be classified into

ne-step DA and multi-step DA considering the distance of the

ource and target domains. When the distance is small, one-

tep DA can be used based on training loss. It consists of the

iscrepancy-based approach, the adversarial-based approach, and

he reconstruction-based approach. When the source and target

omains are not directly related, multi-step (or transitive) DA can

e used. The key of multi-step DA is to select and utilize interme-

iate domains, thus falling into three categories, including hand-

rafted, feature-based and representation-based selection mecha-

isms. 

Although deep DA has achieved success recently, many issues

till remain to be addressed. First, most existing algorithms focus

n homogeneous deep DA, which assumes that the feature spaces

etween the source and target domains are the same. However,
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his assumption may not be true in many applications. We ex-

ect to transfer knowledge without this severe limitation and take

dvantage of existing datasets to help with more tasks. Heteroge-

eous deep DA may attract increasingly more attention in the fu-

ure. 

In addition, deep DA techniques have been successfully applied

n many real-world applications, including image classification, and

tyle translation. We have also found that only a few papers ad-

ress adaptation beyond classification and recognition, such as ob-

ect detection, face recognition, semantic segmentation and person

e-identification. How to achieve these tasks with no or a very lim-

ted amount of data is probably one of the main challenges that

hould be addressed by deep DA in the next few years. 

Finally, since existing deep DA methods aim at aligning

arginal distributions, they commonly assume shared label space

cross the source and target domains. However, in realistic sce-

ario, the images of the source and target domain may be from

he different set of categories or only a few categories of interest

re shared. Recently, some papers [92,143,144] have begun to focus

n this issue and we believe it is worthy of more attention. 
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