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Abstract
Comprehending different categories of facial expressions plays a great role in the design of computational model analyzing
human perceived and affective state. Authoritative studies have revealed that facial expressions in human daily life are in
multiple or co-occurring mental states. However, due to the lack of valid datasets, most previous studies are still restricted
to basic emotions with single label. In this paper, we present a novel multi-label facial expression database, RAF-ML, along
with a new deep learning algorithm, to address this problem. Specifically, a crowdsourcing annotation of 1.2 million labels
from 315 participants was implemented to identify the multi-label expressions collected from social network, then EM
algorithm was designed to filter out unreliable labels. For all we know, RAF-ML is the first database in the wild that provides
with crowdsourced cognition for multi-label expressions. Focusing on the ambiguity and continuity of blended expressions,
we propose a new deep manifold learning network, called Deep Bi-Manifold CNN, to learn the discriminative feature for
multi-label expressions by jointly preserving the local affinity of deep features and the manifold structures of emotion labels.
Furthermore, a deep domain adaption method is leveraged to extend the deep manifold features learned from RAF-ML to
other expression databases under various imaging conditions and cultures. Extensive experiments on the RAF-ML and other
diverse databases (JAFFE, CK+, SFEW and MMI) show that the deep manifold feature is not only superior in multi-label
expression recognition in the wild, but also captures the elemental and generic components that are effective for a wide range
of expression recognition tasks.

Keywords Facial expression recognition · Deep feature learning · Multi-label classification · Crowdsourced database
in-the-wild

1 Introduction

Automatic facial expression analysis has attracted broad
attention due to its numerous potential applications in social
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media analysis and human–computer interaction (HCI).
Research on recognizing emotion through facial expressions
can be traced back to the 1970s, when Ekman and Rosen-
berg (1997) have defined six basic expressions on account of
extensive studies, namely happiness, sadness, anger, surprise,
disgust and fear. Because of their evolutionary significance,
most of the previous studies on the discrete categorical
emotion description streamhave regarded the emotion recog-
nition problemas a singular classification problemand turned
to classifying expressions into one of those six categories or
seven categories (plus neutral). It is reported that nearly up
to 100% performances has been achieved on this single-label
classification task (Li and Deng 2018), e.g., 98.9% obtained
in Zhang et al. (2018).

However, while analyzing natural human interactions, one
cannot expect that every human will express clear emotional
content. Authoritative studies Ekman and Friesen (2003),
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Hassin et al. (2013), Izard (1972) and Plutchik (1991) have
discovered that, humans’ facial representations are often not
pure examples of a single expression category, but always
admixtures of different emotions; that is, they appear as com-
binations, blends, or compounds of different basic emotions.
For example, one may feel both surprised and fearful con-
currently when getting an unexpected fright. It is grounded
that treating facial expression analysis as a single-label clas-
sification problem is over simplified and lack of practical
applicability.

One line of approaches (Ding et al. 2013; Eleftheri-
adis et al. 2015b; Pantic and Rothkrantz 2000; Zeng et al.
2015) to this complex emotion problem are based on facial
action coding system (FACS) analysis (Ekman and Rosen-
berg 1997). Unfortunately, annotating large number of action
units (AUs) of facial images, especially in unconstrained real-
word conditions, is extremely time-consuming and requires
professionally trained annotators. And it is also quite difficult
to correspond the combinations of AUs to specific emotion
category.

In contrast, the other line of approaches based on multi-
label expression recognition is more convenient and accessi-
ble, which can intuitively figure out blended expressions and
quantify the recognition result into multiple emotion labels.
However, related studies Chang et al. (2004), Wang et al.
(2014), Zhou et al. (2015) and Zhao et al. (2015) were con-
ducted on few small-scale lab-controlled databases, which
may not be applicable to our daily life. Limitation in this case
is mainly caused by the lack of specific databases. Detailed
investigations on facial expression databases have showed
that most of the existing databases only provide samples
attached to one label, i.e., single emotion label is associ-
atedwith each instance. There have been no facial expression
databases, as far aswe know, that explicitly consider humans’
various perception of emotion both in the image collection
and annotation process.

To address this issue, we treat the recognition task as a
multi-label problem and construct a novel database, Real-
worldAffectiveFace-Multi Label (RAF-ML),1 formulti-label
expression analysis. First of all, a great amount of facial
images in different occlusions, illuminations and resolutions
from thousands of different individuals were collected from
the social network. To pick out images with blended expres-
sions, motivated by Ekman’s theory,2 we employed 315
well-trained annotators to ensure each image can be anno-
tated enough independent times. Furthermore, an EM based

1 http://www.whdeng.cn/RAF/model2.html.
2 Ekman have stated in Ekman et al. (2013), “if the stimulus does con-
tain an emotion blend, and the investigator allows only a single choice
which does not contain blend terms, low levels of agreement may result,
since some of the observersmay choose a term for one of the blend com-
ponents, some for another.”

reliability evaluation algorithm is proposed to get a reliable
emotion probability vector for each image. By analyzing
1.2 million labels of around thirty thousand unconstrained
images, 4908 images with multi-peak label distribution have
been selected out to constitute RAF-ML.3 To our best
knowledge, RAF-ML is the first in-the-wild facial expres-
sion database that is specially designed for affective images
attached with certain multiple tags via crowdsourced annota-
tion. Figure 1 exhibits examples of samples in RAF-ML that
presented with multi-label expressions under various real-
world conditions.

Deep learning has been the state-of-the-art technique on
many unconstrained recognition tasks, however, there has
been no suitable model focusing on the subtlety, complex-
ity and continuity of multi-label expressions in the wild.
To achieve this goal, we propose a new deep manifold
feature learning based framework, Deep Bi-Manifold CNN
(DBM-CNN),which simultaneously and efficiently considers
crowd-sourced label information and feature compactness in
the low-dimensional manifolds by adding a new loss layer,
bi-manifold loss. Jointly trained with the cross-entropy loss
which forces images with different labels to stay apart, the
bi-manifold loss drives the locally neighboring faces sharing
the similar intensity distribution to become coherent and thus
the discriminative power of the deeply learned features can
be highly enhanced.

To enhance the generalization ability of the learned fea-
tures, we extend the DBM-CNN to learn more transferable
representations for other related expression databases by
embedding domain adaptation in the pipeline of deep learn-
ing. As DBM-CNN learns deep features that eventually
transition from general to specific along the network, amulti-
kernel maximummean discrepancies (MK-MMD) loss layer
is appended to DBM-CNN to align the statistical distribution
shift between the training setRAF-MLandother test datasets.
Moreover, for the special scenario that transfers from the
multi-label source domain to the single-label target domain,
an entropy loss is further employed to force the learned label
space on the target data to present an unimodal distribution,
so that the output probability vectors are closer to the single-
label ground truth. By matching the mean embeddings of
these two different domains, the capacity of preserving the
local clusters on bi-manifolds can thus be efficiently applied
to a great diversity of facial expression recognition (FER)
scenarios.

Extensive experiments on RAF-ML were conducted by
comparing several widely-used handcrafted features and
deep learning features across different multi-label classifi-
cation algorithms and various evaluation metrics. Results

3 Compound emotions out of these 4908 images and the other basic
emotions have been presented in RAF-DB (Li et al. 2017; Li and Deng
2019).
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Fig. 1 Examples with multi-label emotions fromRAF-ML.We can see that people in our daily life tend to express a combination of several different
repertoire of feelings. Therefore, it is misguided to simply describe human emotion and affect using only one single component expression

show that our deep manifold feature outperforms both hand-
crafted andother state-of-the-artCNNfeatures.Moreover, by
implementing domain adaption for DBM-CNN, the activa-
tion features trained on RAF-ML can generalize well to other
unseendatabases, such asmulti-label database JAFFE (Lyons
et al. 1998) and single-label databases CK+ (Lucey et al.
2010), SFEW 2.0 (Dhall et al. 2015b) and MMI (Valstar and
Pantic 2010), which suggests that our network can generate
universal features to handle a wide range of emotion analysis
tasks for different expression datasets.

The reminder of this paper is organized as follows. Sec-
tion 2 discusses the definition, existing datasets, and the
state-of-the art learning methods for multi-label FER, and
also reviews the related approaches for facial expression
domain adaption. Section 3 presents details of the con-
struction process of RAF-ML. Section 4 proposes the new
deep manifold feature learning model DBM-CNN. Section 5
introduces the deep domain adaption method to transfer the
knowledge gained fromRAF-ML to other related expression
databases. In Sect. 6, we include the experimental results of
different features on RAF-ML. Then we evaluate the gener-
alizability of our method on different FER tasks. Finally, we
discuss and conclude the work in Sect. 7.

2 RelatedWork

In this section, we first investigate the definition of multi-
label facial expressions and relevant existing databases. Then

we review the related work in multi-label FER and domain
adaption methods for FER.

2.1 Multi-label Expression Definition

Since the twentieth century, numerous psychological stud-
ies and cognitive sciences have endorsed the theory that the
capacity of the face frequently contains components of more
than one emotion at the given instant, observable even in still
facial photographs.

Tomkins (1963) discussed how various emotions come to
be combined. The author gave an example that a child may
experience an emotional state that is a mixture of fear and
shame when under certain patterns of parenting. In Ekman
and Scherer (1984), the authors’ studies of self-report sug-
gested that people typically experience blends of emotions. If
subjects are asked to imagine fear they are likely to generate
fear blendedwith surprise or distress. Experiments conducted
by Nummenmaa (1988) certified that it is possible for human
to express pleasure, surprise, hate, fear, and sorrow, and pair-
wise combinations of these. Still photographs are also proved
to be useful for this specific purpose. Izard (2013) also listed
some common patterns or combinations of affects. For exam-
ple, anxiety can be defined as a mixture of sadness, fear
and anger. Individual variations in the patterns of basic emo-
tions can yield different kinds of anxiety. Most recently, Du
et al. (2014) have proposed compound facial expressions that
are constructed as a combination of two basic emotion cate-
gories and identified 15 compound expressions consistently
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produced across cultures. Their theories all indicate that the
single discrete emotions can be blended or fused to form new
emotions and these prototype emotions should prove useful
in delineating the precise blended composition ofmental rep-
resentations.

Therefore, in this paper, in order to learn a practical facial
expression analyzer which can intuitively figure out blended
expressions in our daily life and quantify the recognize result
into multiple emotion labels, we hinge on the theory of the
blending of six basic emotions and model facial expression
analysis as a multi-label classification problem.

2.2 Multi-label Expression Databases

According exhaustive investigations Anitha et al. (2010) and
Sariyanidi et al. (2015) on facial expression databases, most
existent databases only provide images attached with one
expression category. And only two datasets provide expres-
sion data with multilabel information: the lab-controlled
database JAFFE (Lyons et al. 1998) and the in-the-wild
database EmotioNet (Fabian Benitez-Quiroz et al. 2016).

JAFFE database includes 213 facial images of only ten
Japanese female subjects posing the six basic expressions
plus neutral expression. Each of the subjects poses three to
four examples per expression to make a total of 213 gray-
scaled images in the size of 256×256 pixels. The images
were captured under controlled environment in terms of pose
and illumination, but it is worth mentioning that besides a
single label representing the predominant expression of each
image, semantic ratings of the expressions are provided as
well, which represent the intensity on each emotion. A five-
level scale was used for each of the 6 adjectives (5 represents
highest emotion intensity, while 1 represents lowest emotion
intensity).

EmotioNet is a large-scale databasewith onemillion facial
expression images collected from the Internet by selecting all
the words derived from the word “feeling” inWordNet. Most
samples were annotated by an automatic AU detection algo-
rithm, and the remaining 10%were manually annotated with
AUs. EmotioNet contains 6 basic expressions plus neutral
expression and also 17 compound expressions; however, the
emotion categories are inferred from the AU labels without
directly manual annotation and the multi-label expression
categories it includes are composed of only two different
basic component emotions.

For more thorough comparison, we also discuss the lab-
controlled database BU-3DFE (Yin et al. 2006) and the
in-the-wild database HAPPEI (Dhall et al. 2015a) which
provide samples with single emotion label that attached
with intensity information. The lab-controlled BU-3DFE
database contains 606 facial expression sequences captured
from 101 subjects who are requested to perform seven pro-
totypic emotional states. Each sample is represented by

one basic expression label with intensity information which
are valued by the subjects and two psychologists. HAPPEI
database consists 4886 images with multiple faces down-
loaded from Flickr. Without self-rating, in this database,
labels are obtained from the perception of the annotators.
And for these images, discrete levels of happiness intensity
were manually annotated for 8500 faces. The face-level hap-
piness intensity’s range is [0–5], which corresponds to six
stages of happiness.

For the two databases that created in lab-controlled envi-
ronment, during the generation stage, participators in these
two databases were requested to perform just one of the
prototypic facial expressions deliberately. And images were
produced in tightly controlled environments that are short
of diversity on subjects and conditions. For the other two
databases that collected from realworld, there still exist some
common deficiencies. The emotion intensity information for
each example cannot cover all six basic expressions and the
number of relevant labels to compose multi-label expression
is limited. Moreover, the number of annotators is insufficient
to guarantee the reliability and validity of the emotion labels.
So in this paper, we propose a new database, RAF-ML, that
provides images from various environments with multi-label
expressions based on group perception and label data with
minimal noise.

2.3 Multi-label Learning in Facial Expression
Recognition

During the past decades, significant amount of progresses
have been made on the multi-label classification learn-
ing paradigm. Detailed definition, evaluation metrics and
representative multi-label learning algorithms can be seen
in Tsoumakas and Katakis (2006) and Zhang and Zhou
(2014). However, very few models of multi-label facial
expressions have been developed so far for facial expression
analysis.

In Chang et al. (2004), the transition between different
expressions is presented as the evolution of the posterior
probability of the six basic paths via a probabilistic model
which can recognize blended expressions. In Wang et al.
(2014), a novel approach of implicitmultiple emotional video
tagging is proposed which considers the relationship among
the facial multi-expressions, and the relationships among
the expression and emotions. In Zhao et al. (2015), multi-
label Group Lasso regularized maximum margin classifier
(GLMM) and Group Lasso regularized regression (GLR)
algorithms are proposed which can model FER jointly with
multiple outputs. In Zhou et al. (2015), an emotion distri-
bution learning (EDL) algorithm has been proposed which
learns the specific description degrees of all six basic emo-
tions and maps the given expression image to the emotion
distributions. InXing et al. (2016), an additiveweighted func-
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tion regression from statistical viewpoint, Logistic Boosting
Regression (LogitBoost), is used to constitute two Label Dis-
tribution Learning (LDL) algorithms named LDLogitBoost
and AOSO-LDLogitBoost, which can lead to better perfor-
mances on expression recognition.

Different from these methods that conducted on small-
scaled laboratory-controlled facial expression databases and
are shallow-learned, we proposed a novel deep network com-
bined with manifold learning and evaluated our method on
the in-the-wild database, RAF-ML.

Apart from the above mentioned methods conducted on
multi-label facial expression, deep label distribution learning
(DLDL) is proposed in Gao et al. (2017). Specifically, the
discrete label distribution information is first constructed for
various popular visual tasks under proper assumptions. Then,
the Kullback–Leibler divergence between the predicted and
obtained label distributions isminimized using deepCNNs to
learn the label distribution. In our paper,wedirectly treat FER
as a multi-label classification task and provide the ground-
truth label distribution of training samples. We also employ
the KL loss (i.e., multi-label softmax cross-entropy loss in
this paper) to supervise the learning process and explore
the label distribution information. Moreover, we propose a
bi-manifold loss to further help enhance the discrimination
ability of the learned deep features.

2.4 Domain Adaption in Facial Expression
Recognition

Numerous approaches in the field of domain adaption have
been proposed in the last years to address adaption problems
that arise in different computer visual scenarios. However,
very few significant interest until now has been gained in the
cross-domain learning of facial expression recognition.

In Yan et al. (2011), the authors investigated the cross-
dataset FER problem on facial expression and proposed a
transfer subspace learning method. Afterwards, Miao et al.
(2012) proposed a supervised extension of Kernel Mean
Matching to match the distributions between different facial
expression databases. In Chen et al. (2013), a person-specific
model was proposed to transfer the informative knowledge
from other people to a new subject with a small amount of
training data. In Chu et al. (2013), a transductive learning
method, Selective TransferMachine (STM), was proposed to
personalize a generic classifier by attenuating person-specific
mismatches. And Zen et al. (2016) proposed a regression
framework, Transductive Parameter Transfer (TPT), to build
personalizing classification models which does not require
labeled target data. In Zhu et al. (2016), a discriminative
feature adaptationmethodwas proposed tominimize themis-
match between different expression databases.Most recently,
Zong et al. (2017) proposed Target Sample Re-Generator
approach to re-generate samples sharing the same or similar

distribution with the source ones for cross-domain micro-
expression recognition.

In contrast to methods mentioned that transfer among dif-
ferent basic expression databases or different people within
one single database, our approach makes an effort to adapt
features learned frommulti-label facial expressions database
to basic expression recognition based on the deep learning
technique.

3 RAF-ML

In this section, we go into details about the image collec-
tion, crowd-sourcing annotation and evaluation, multi-label
construction and statistic metadata on RAF-ML dataset.

3.1 Collecting Process

To collect imageswith blended expressions, a set of emotion-
related keywords combined with others related to age, race
and gender were used as querywords. And then image search
engine of Flickr which has well-structured XML format
search API with abundant user-added tags and much fewer
duplicates than other search engines was queried with these
keywords to download images containing naturalistic emo-
tions in batches as many as possible.

After collecting sufficient affective images, a crowdsourc-
ing annotation was used to select images with multi-label
expressions. Naming and labeling emotions is a difficult and
time-consuming task, especially when dealing with authen-
tic data collected from challenging real-world conditions. In
order to control the annotation difficulty, inspired byEkman’s
theory (2013), we employed 315 annotators (students and
staffs from universities) who have been instructed with a
one-hour tutorial of psychological knowledge on emotion
for an online annotation assignment, during which they were
asked to classify images into the most apparent one from
seven classes. During annotation, each image was labeled by
about 40 independent labelers to ensure that multiple per-
ceptions of images’ affective state can be collected from
sufficient observers. As a result, a multi-label annotation
result is obtained for each image. Figure 2 shows the pipeline
of data collection and annotation.

3.2 Reliability Estimation

Due to subjectivity and varied expertise of labelers and
wide ranging levels of images’ difficulty, there were some
disagreements among annotators. Instead of employing the
disambiguation methods with convex optimization (Cour
et al. 2011; Zhang and Yu 2015) to get rid of noisy labels,
we chose a parametric model, the ExpectationMaximization
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Fig. 2 Overview of construction and annotation of RAF-ML. Tens of
thousands portraits were first collected from social networks. The a
website was developed to make it easy for our annotators to contribute,

by which images can be randomly and equally assigned to each labeler.
After label reliability selection, a 6-dimensional distribution ground
truth is attached to each sample

(EM) framework, to iteratively optimize and assess the target
parameters of each labeler’s reliability.

Let D = {(x j , y j , t1j , t2j , . . . , t Rj )}nj=1 denote a set of n
labeled inputs, where y j is the gold standard label (hidden
variable) for the j th samples x j , t ij ∈ {1, 2, 3, 4, 5, 6, 7} is the
corresponding label given by the i th annotator. The correct
probability of t ij are formulated as a sigmoid function: p(t ij =
y j |αi , β j ) = (1 + exp(−αiβ j ))

−1 = σ(αi , β), where 1/β j

is the difficulty of the j th image, αi is the reliability of i th
annotator.

Our goal is to optimize the log-likelihood of the given
labels:

max
β>0

l(α,β) =
∑

j

ln p(t|α,β) =
∑

j

ln
∑

y

p(t, y|α,β)

=
∑

j

ln
∑

y

Q(y)
p(t, y|α,β)

Q(y)

≥
∑

j

∑

y

Q(y) ln
p(t, y|α,β)

Q(y)
,

where the last step is deduced by the Jensen’s inequality.
Instead of explicitly maximize l(α,β), we choose to itera-
tively calculate the lower-bound on l(α,β) in E-step, and
then optimize the lower-bound in M-step.

Let Q(y) be a certain distribution of hidden variable y
(i.e.,

∑
y Q(y) = 1). According to the necessary and suffi-

cient condition about the equality for the Jensen’s inequality,
p(t,y|α,β)

Q(y) = c for some constant c that does not depend on
y. Then, we can further get:

Q(y j ) = p(t j , y j |α, β j )∑
y p(t j , y j |α, β j )

= p(t j , y j |α, β j )

p(t j |α, β j )

= p(y j |t j ,α, β j ),

here t j indicates the set of all given labels for the j th sample.
Thus, we set Q(y) to be the posterior distribution of y given
t and the currently estimated parameters α and β.

After obtaining the lower-bound on the log-likelihood in
E-step, we optimize the lower-bound with respect to the
model parameters using gradient ascent method to obtain a

new setting of parametersα and β inM-step. These two steps
are iteratively carried out until convergence. Specifically, the
joint probabilities in the lower bound can be formulated as:

P(t, y|α,β) =
∏

j

p(y j )
∏

i

p(t ij |y j , αi , β j )

=
∏

j

p(y j )
∏

i

(
∑

c

p(t ij |y j = c, αi , β j )

)

=
∏

j

p(y j )
∏

i

(
∑

c

(
σ(αiβ j )

I(t ij=c)

∗
(

1

c − 1

(
1 − σ(αiβ j )

))1−I(t ij=c)
))

,

where I(A) is an indicator function that evaluates to “1” if
the Boolean expression A is true and “0” otherwise.

After revision, 285 annotators’ labels have been remained
and Cronbach’s Alpha score of all labels is 0.966. Algo-
rithm 1 summarizes the learning process of label reliability
estimation. In contrast to the Gaussian prior initialization
in Whitehill et al. (2009), we leverage the prior knowledge
of annotation for initialization, which shows faster conver-
gence.

3.3 Multi-label Expression Selection

LetG j = (g1, g2, . . . , g7) denote the ground truth probabil-
ity vector of the j th image, where gk = ∑R

i=1 αi I(t ij = k),
and label k ∈ {1, 2, 3, 4, 5, 6, 7} refers to surprise, fear,
disgust, happiness, sadness, anger and neutral, respectively.
We first calculated the mean distribution value gmean =∑7

k=1 gk/7 for each image, then chose label k w.r.t. gk >

gmean as the valid label. Images which only have single
valid label were filtered out, and the remained 4908 images
constitute RAF-ML. This selection criterion, to a large
extent, ensures samples in RAF-ML all present multi-label
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Algorithm 1 Label reliability estimation algorithm

Input: Training set D = {(x j , t1j , t2j , ..., t Rj )}nj=1
Output: Each annotator’s reliability α∗

i

Initialize:
∀ j = 1, ..., n, initialize the true label y j using majority voting. The
initial value of β j is image j’s entropy. The higher the entropy, the
more uncertain the image.

β j := −
R∑

i=1
p(t ij ) ln p(t ij ) αi := 1

Repeat:

E-step:
Q(y j ) := ∏

i
p(y j |t ij , αi , β j )

M-step:

αi := argmaxαi

∑
j

∑
y
Q(y j ) ln

p(t j ,y j |αi ,β j )

Q(y j )

*We also optimize β j along with αi during M-step. However, the
goal is to get each labeler’s reliability, so we didn’t include it in this
step. For optimization, we take a derivative with respect to β j and αi
respectively.
Until convergence

expressions. We further discarded the 7th element (rep-
resenting ‘neutral’) and re-normalized, resulting in a new
6-dimensional distribution. We then set the threshold to 1/6
and got the multi-label set for each images. As a result, the
emotion category of each image in our RAF-ML is presented
as a combination of several basic emotions.

3.4 Dataset Metadata

In RAF-ML, the number of images with two, three and four
labels are 3954, 913 and 41, respectively.4 Specifically, the
number of images including each basic emotion are 2093 for
Surprise, 1197 for Fear, 2607 for Disgust, 1330 for Happi-
ness, 1647 for Sadness, and 1937 for Anger, respectively.
To compare our dataset with the lab-controlled one, some
examples of multi-label images and their emotion distribu-
tions from RAF-ML and JAFFE are shown in Fig. 3.

We have also provided both manual and automatic modes
of facial landmarks. Rough locations and points were first
detected automatically using the Viola–Jones face detec-
tor (Viola and Jones 2001) and SDM (Xiong and De la Torre
2013). Then, the imprecise or missed detections were cor-
rected by our labelers to get accurate five landmarks (the
centers of two eyes, the tip of the nose and the two corners of
themouth). Besides, an automatic landmark annotationmode
is included: 37 landmarks were picked out from Face++
API (Inc. 2013). After getting the landmarks, we applied an

4 It’s reasonable that there are no images with five or six labels in
RAF-ML, since people can hardly perceive both negative and posi-
tive valence-level (for example, joyful and angry) simultaneously from
still images, which occupy different regions in the valence-activation
space (Cowie et al. 2001; Russell and Barrett 1999).
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Fig. 3 Example images (already aligned) with their ground truths in
RAF-ML and JAFFE. Comparing the emotion distribution histogram
of these two databases, we can see that with the crowd-sourced label
annotation and the EM optimized algorithm, images in RAF-ML have
more distinct multi-label expression distribution. a RAF-ML, b JAFFE

affine transformation that maps the two eye centers and the
center of mouth corners to the fixed coordinates (20, 30), (80,
30) and (50, 75) in 100×100 size, and then gray-scaled the
cropped images.

Beside the facial landmarks, we have also manually
annotated other basic attributes (age, gender and race) for
RAF-ML. In particular, 9.09, 15.94, 55.47, 15.83 and 3.67
percent of the subjects are in age ranges [0, 3), (4, 19), (20,
39), (40, 69) and (70, –), respectively. For gender distribution,
there are 53% female, 45%male, and 2% remains unsure. For
racial distribution, there are 74% Caucasian, 10% African
American, and 16% Asian.

3.5 Single-Label Classification on RAF-ML

To see if methods that behave well in single-label classifica-
tion tasks can also gain high recognition rate when tested on
multi-label data, we assume RAF-ML to be a basic expres-
sion dataset where the predominant emotion of each image
is re-selected as the single label ground truth, and then apply
it to the single-label classification task.

During experiment, we first extracted deep features
from AlexNet (Krizhevsky et al. 2012) and VGG network
(Simonyan and Zisserman 2014). For classifier, support
vector machine (SVM) with linear kernel implemented by
LibSVM (Chang and Lin 2011) was employed, and the
penalty parameter C was determined by means of a fivefold
cross-validation method. The best single-label classification
performance is 42.87% for AlexNet and 43.48% for VGG
network. Concrete result for deep features from VGG net-
work is shown in Table 1, in the form of a confusion matrix.
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Table 1 Confusion matrix for the six basic emotion categories when
using VGG features and SVM

(%) Sur Fea Dis Hap Sad Ang

Sur 65.67 3.86 18.88 3.43 4.29 3.86

Fea 29.23 23.08 26.15 3.08 6.15 12.31

Dis 10.41 0 66.52 2.26 6.79 14.03

Hap 39.22 1.96 30.39 6.86 4.90 16.67

Sad 13.45 0.58 54.39 3.51 15.20 12.87

Ang 13.68 2.11 32.11 4.21 6.84 41.05

Bold values indicate the results of the diagonal of the confu-
sion matrix

From thematrix,we can see that there exists a very significant
degree of confusion between these six basic emotions, which
suggests that multi-label emotions analysis in real world can
not be simply treated as single-label problem and techniques
which can better comprehend the continuum of human emo-
tional behavior should be developed to deal with this special
data group.

4 Deep Bi-Manifold (DBM) Feature Learning

Deep convolutional neural networks (DCNNs) have achieved
state-of-the-art performance on a wide range of tasks in
computer vision community. Furthermore, recent studies
found that the softmax loss layer of CNN only encourages
the separability of features, which makes Deep Convolu-
tional activation features (DeCaf) (Donahue et al. 2014)
not discriminative sufficiently. Several works have appended
additional tasks (layers), such as contrastive loss (Hadsell
et al. 2006), triplet loss (Schroff et al. 2015) and center
loss (Wen et al. 2016), to enhance the discriminative power
of the deeply learned features. Unfortunately, these dis-
criminative CNN methods are all designed for single-label
recognition tasks, which may not be suitable for our multi-
label expression recognition. To address this limitation, we
propose a novel deep learning model, called DBM-CNN,
to make sense of label distribution information arising from
blended expressions, by making twomajor improvements on
the conventional CNN.

Let D = {(xi , yi ·)}ni=1 be our dataset with xi ∈ R the
i th image and yi · the corresponding label set. The binary
vector yi · = (y1i , . . . , y

C
i ) ∈ {0, 1}C , where C is the total

number of classes, and y j
i = 1 when xi is assigned to the j th

expression class and 0 otherwise. Our goal is to learn amulti-
label expression model that can capture label distribution
information arising from blended expressions and find the
optimal bipartite partition of relevant and irrelevant labels.

Firstly, we replace the traditional softmax loss with the
multi-label cross-entropy loss which can be defined as:

Lc = −1

n

n∑

i=1

C∑

j=1

y j
i log p j

i , (1)

where p j
i = exp( f j (xi ))∑

k exp( fk(xi ))
is the predicted probability of the

j th emotion category for the i th input feature output by the
softmax, and f j (xi ) is the j th dimension of the intermediate
feature for the i th input sample learned from the network.
This cross-entropy lossmerely helps to keep the deep features
with distant label vectors separable, which is the base of
DBM feature learning.

According to the chain rule, the gradient of Lc with respect
to f j (xi ) is computed as:

∂Lc

∂ f j (xi )
=

C∑

m=1

∂Lc

∂ pmi

∂ pmi
∂ f j (xi )

= −1

n

C∑

m=1

ymi
pmi

∗ pmi

(
I(m = j) − p j

i

)

= −1

n
(y j

i − p j
i )

(2)

Secondly, and more importantly, we add a new supervised
layer on the fundamental architecture shown in Fig. 4, called
bi-manifold loss, to further enhance the discrimination ability
of the deep features. The “bi-manifold” here indicates the
layer takes account of the information from both the feature
manifold M f and the label manifold Ml .

Let the deep feature x f ∈ R
d denote the Deep Convo-

lutional activation feature (DeCaf) of the training sample x ,
which is assumed to reside onM f , and the label distribution
vector xl ∈ R

C denote the intensities of emotions attached to
the relevant sample x , which is assumed to reside on the label
manifold Ml . Our objective is to explicitly learn the multi-
label classification oriented feature by aligning the locality
of the deep features x f and corresponding label distribution
vector xl . Inspired by He and Niyogi (2004), we realize the
goal by constructing the nearest-neighbor graph of expres-
sion manifold. To formulate the optimization procedure:

min
∑

i, j

(
S f
i j + Sli j

) ∥∥∥x f
i − x f

j

∥∥∥
2

2
, (3)

where the affinity matrices S f and Sl specify the similarity
between xi and x j on the feature manifold and label mani-
fold, respectively. A possible way of defining S f and Sl is
as follows,

S f
i j =

{
1, x f

j is k-NN of x f
i , vice versa

0, otherwise
(4)

Sli j =
{
1, xlj is k-NN of xli , vice versa
0, otherwise

(5)
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Fig. 4 Framework of the proposed DBM-CNN model. The multi-
label softmax cross-entropy loss provides the most basic classification
information and keeps features with distant label vectors apart. The

bi-manifold loss forces the neighboring features to share similar label
vectors and thus become more compact by iteratively aligning the fea-
ture manifold and the label manifold

where the local neighborhood is defined by the k nearest
neighbors of both feature x f and label xl ; that is,we calculate
the k-nearest neighbors on the feature manifold M f and
the label manifold Ml in the meanwhile and then combine
them together. Note that we have also attempted to define the
neighborhood by the KNN of the concatenated vector of xl

and x f , which shows less meanings for the manifold feature
learning.

During the training process, the feature space x f should
be updated as the iterative optimization of the CNN. To com-
pute the summation of the pairwise distance, we need to take
the entire training set in each iteration, which is inefficient to
implement. To address this difficulty, we do the approxima-
tion by searching the k nearest bi-neighbors for each sample
xi . Therefore, the bi-manifold loss function is defined as:

Lbm = 1

2n

n∑

i=1

∥∥∥∥∥∥∥
2x f

i − 1

k

∑

x∈N f
k {xi }

x f − 1

k

∑

x∈Nl
k {xi }

x f

∥∥∥∥∥∥∥

2

2

,

(6)

where N f
k {xi } and Nl

k{xi } denotes the ensemble of the k
nearest neighbors of sample xi on the feature manifold and
the label manifold respectively. The gradient of Lbm with
respect to x f

i is computed as:

∂Lbm

∂x f
i

= 1

n

⎛

⎜⎝2x f
i − 1

k

∑

x∈N f
k {xi }

x f − 1

k

∑

x∈Nl
k {xi }

x f

⎞

⎟⎠ . (7)

In the initial period of the training, there is no obvi-
ous overlap between M f and Ml due to unconstrained
variations such as the illuminations, poses and individual
appearances. As the learning process goes on, the coinci-
dence degree of the k-nearest neighbors on x f and xl will
increase, and the joint alignment of the feature manifold and
the label manifold will also be realized. In other word, the
two manifolds would progressively align in such a way that
the neighboring samples tend to share similarmulti-label dis-
tribution vector.

In summary, we adopt the joint supervision of cross-
entropy loss, which characterizes the global scatter, and the
bi-manifold loss,which characterizes the local scatterswithin
similar intensity distribution information, to train the CNNs
for discriminative feature learning. The objective function is
formulated as follow:

L = Lc + λLbm, (8)

where Lc denotes the cross-entropy loss and Lbm denotes
the bi-manifold loss. The hyper parameter λ is used to
balance these two loss functions. In this manner, we can
perform the update based on mini-batch. Algorithm 2 sum-
marizes the learning process in the DBM-CNN. Intuitively,
the cross-entropy loss forces the deep features with differ-
ent labels to stay apart and the bi-manifold loss efficiently
pulls the neighboring deep features with the similar emo-
tion distribution together. With the joint supervision, both
the inter-class feature differences and the local feature corre-
lations are enlarged. Hence the discriminative power of the
deeply learned features can be highly enhanced.
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Algorithm 2 Optimization algorithm of DBM-CNN.
Input: The training data D = {(xi , yi ·)}ni=1,
n is the size of mini-batch.

Output: Network layer parameters Θ .

Initialize: The number of iteration t ← 0, network learn-
ing rate μ, hyper parameter λ, network layer parameters
Θ , bi-neighboring nodes k.

Repeat:
1: t ← t + 1

2: Computer each center of k-nearest bi-neighbor for xi :

Ct
i = 1

k

n∑
i �= j

x f (t)

j

(
S f (t)

i j + Sli j

)

3: Compute the joint loss:
Lt = Lt

c + λLt
bm

4: Update the back-propagation error for xi by Eq (2) and
Eq (7):

∂Lt

∂x f (t)

i

= ∂Lt
c

∂x f (t)

i

+ λ
∂Lt

bm

∂x f (t)

i

5: Computer the network layer parameters Θ:

Θ t+1 = Θ t − μt ∂Lt

∂Θ t = Θ t − μt
n∑

i=1

∂Lt

∂x f (t)

i

∂x f (t)

i
∂Θ t

Until convergence

5 Domain Adaption for Extensive Facial
Expression Recognition Tasks

Due to differences in collection conditions, subject charac-
teristics and behaviors, facial expression inconsistency is
common across databases and cultures (Jack et al. 2012),
which makes it challenging to conduct expression recogni-
tion in the cross-dataset scenario. Therefore, in this section,
deep bi-manifold features learned from RAF-ML is further
exploited via domain adaptation so that it can generalize well
to other related databases for a wide range of emotion anal-
ysis tasks.

Domain adaptation (DA) has beenwidely utilized in cross-
database scenarios where the training data in source domains
used to learn a model has different distribution from the tar-
get data (Patel et al. 2015; Csurka 2017). Traditional domain
adaptationmethods assume that the task is the same, i.e., class
labels are shared between domains. Therefore, the feature
learned from RAF-ML can appropriately transfer to other
databases within multi-label expression recognition task. In
addition, since themulti-label emotions are composed of two
or more component categories of basic expression, and our
DBM-CNN learns features for multi-label facial expressions
by exploring the emotion intensity distribution information
from these basic components, we believe that the DBM-
CNN architecture can also learn competent features for basic

expression recognition by the agency of domain adaption
technique.

Considering that in this context training and test data are
drawn from different distribution, MaximumMean Discrep-
ancy (MMD) which is an effective metric for comparing
the distributions is employed to decrease the cross-domain
discrepancy in feature space. Denote by the source domain
S = {(xsi , yi ·)}nsi=1 the trainingmulti-label data and the target
domain T = {xti }nti=1 the test data without label informa-
tion, where yi · denotes the label vector of the sample xsi , and
xsi , x

t
i ∈ R

d . The MMD between these two domains and its
empirical estimate in the reproducing kernel Hilbert space
(RKHS) can be defined as:

MMD[F , ps, pt ] := sup
f ∈F

(
Eps [ f (xs)] − Ept [ f (xt )]

)
, (9)

MMD[H,S, T ] :=
∣∣∣∣∣

∣∣∣∣∣
1

ns

ns∑

i=1

φ(xsi ) − 1

nt

nt∑

i=1

φ(xti )

∣∣∣∣∣

∣∣∣∣∣
H

,

(10)

where Eps and Ept denote the population expectations under
distribution ps and pt , respectively. TheMMD function class
F is the unit ball in a reproducing kernel Hilbert space H.
According to Gretton et al. (2012a), MMD[F , ps, pt ] = 0
if and only if ps = pt . Hence we can use the MMD to detect
any discrepancy between ps and pt .

By mapping the data into H using feature space map-
ping function φ(·), we can get the kernel map k(xs, xt ) =〈
φ(xs), φ(xt )

〉
H. One of the most used kernel correspond-

ing to an infinite-dimensional H is the Gaussian kernel
k(xs, xt ) = exp(−||xs − xt ||2/(2σ 2)). To maximize the test
power, Gretton et al. (2012b) proposed a new kernel selection
approach and denoted a linear combination of base kernels
{kl}dl=1:

K :=
{
k =

d∑

l=1

βl kl ,
d∑

l=1

βl = 1, βl � 0,∀l
}

. (11)

Under the above assumptions, Gretton et al. (2012a) fur-
ther proposed an unbiased estimator of MMD2[H,S, T ]:

MMD2
u[H,S, T ] = 1

ns(ns − 1)

ns∑

i �= j

k(xsi , x
s
j )

+ 1

nt (nt − 1)

nt∑

i �= j

k(xti , x
t
j )

− 2

nsnt

ns ,nt∑

i, j=1

k(xsi , x
t
j ).

(12)

Following the work in Long et al. (2015), a multi-kernel
MMD loss layer is appended to DBM-CNN. As related
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research has suggested (Yosinski et al. 2014), transferability
of the network representation sharply decreases as the layer
goes deeper and hence it will become difficult to directly
transfer the learned feature to the target domain. Therefore,
we utilize the output of the feature embedding layer as the
RKHS for the MK-MMD loss layer so as to regularize the
learned representation to be invariable to domain shift.

By adding the MK-MMD loss layer into the network, the
objective function can be formulated as: L = Lc + λLbm +
γ Lmmd , where Lc and Lbm denote the cross-entropy loss
and the bi-manifold loss on the source domain respectively,
and Lmmd is the multi-kernel MMD loss. λ and γ are the
hyper-parameters toweight against these loss functions.With
the definition in Eq. (12), the gradients of the MMD loss
with respect to source feature xsi and target feature x

t
i can be

computed as:

∂Lmmd

∂xsi
= 1

ns(ns − 1)

ns∑

i �= j

∂k(xsi , x
s
j )

∂xsi

− 2

nsnt

ns ,nt∑

i, j=1

∂k(xsi , x
t
j )

∂xsi
,

(13)

∂Lmmd

∂xti
= 1

nt (nt − 1)

nt∑

i �= j

∂k(xti , x
t
j )

∂xti

− 2

nsnt

ns ,nt∑

j,i=1

∂k(xsj , x
t
i )

∂xti
.

(14)

Given the Gaussian multi-kernel defined in Eq. (11), we
typically take ∂k(xsi , x

t
j )/x

s
i for example:

∂k(xsi , x
t
j )

∂xsi
= −

d∑

l=1

βl

σ 2
l

kl(x
s
i , x

t
j ) ∗ (xsi − xtj ). (15)

In addition, as the domain adaption setting is unsupervised
that only labels in the source domain are provided and labels
in the target domain remain unknown, the learned label space
on the target domainwill tend to presentmultimodal distribu-
tion given the supervision information from the multi-label
source domain, which is contrary to the actual single label it
holds. So, an entropy loss layer is further appended to the last
fully-connected layer of the network for this special scenario.
The entropy loss layer is formulated as follow:

Le = − 1

nt

nt∑

i=1

C∑

j=1

p j
i log(p

j
i ), (16)

where p j
i = exp( f j (xti ))∑

k exp( fk(x
t
i ))

is the predicted probability of

the j th emotion category for the i th input target feature and
f j (xti ) is the j th dimension of the intermediate feature xti

MK-MMD
Loss

Conv1 Conv6 FC7 FC8

Conv1 Conv6 FC7 FC8

Source Domain
Labeled Data

Target Domain
Unlabeled Data

M
ul�-label cross -
entropy Loss

Entropy 
Loss*

Feature Space of Source
Before Domain Adap�on

Feature Space of Target
Before Domain Adap�on

Feature Space A�er
Domain Adap�on

Bi-manifold 
Loss

Fig. 5 Framework of the domain adaption network DBM-DACNN.
Input images from the source domain and the target domain are aligned
to the uniform template and share the same fundamental architecture
(from Conv1 to Fc8). Specifically, the entropy loss works only when
the target domain is single-label data

learned from the network. And C is the total number of
classes. The entropy loss reaches the maximum when the
probabilities are uniform distribution. And it reaches zero
only if one entry of the output probabilities is 1 and all others
are 0.

According to the chain rule, the gradient of Le with respect
to f j (xti ) is:

∂Le

∂ f j (xti )
=

C∑

m=1

∂Le

∂ pmi

∂ pmi
∂ f j (xti )

= − 1

nt

C∑

m=1

(
log(pmi )+1

) ∗ pmi

(
I(m = j) − p j

i

)

= − 1

nt
p j
i

(
C∑

m=1

pmi log(pmi ) − log(p j
i )

)
.

(17)

By updating the network parameters with mini-batch
SGD, the cross-domain network DBM-DACNN can dig into
the intensity differences among basic component expres-
sions on the RAF-ML, and in the meantime, thoroughly
adapt this important information to the target data by bridg-
ing the domain discrepancy. Moreover, by minimizing the
label entropy on the target single-label data, the learned
label space can be forced to exhibit an unimodal distribu-
tion that is closer to the ground truth. Thus, the discriminative
power of the learned features can generalize well to extensive
facial expression recognition tasks on other related expres-
sion datasets. Figure 5 andAlgorithm 3 shows the framework
and the learning process of DBM-DACNN, respectively.

6 Experiments

In this section, we first evaluate the effectiveness of the
DBM-CNN features onRAF-ML. Then the extended domain
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Algorithm 3 Optimization algorithm of the DBM-DACNN.

Input: Source data S = {(xsi , ysi ·)}nsi=1,
Target data T = {xti }nti=1,
ns and nt is the size of mini-batch.

Output: Network layer parameters Θ .

Initialize: The number of iteration j ← 0, network learn-
ing rate μ, bi-neighboring nodes k, hyper parameter λ and
γ , network layer parameters Θ .

Repeat:
1: j ← j + 1

2: Compute the joint loss:
M2M†: L j = L j

c + λL j
bm + γ L j

mmd

M2S‡: L j = L j
c + λL j

bm + γ L j
mmd + ηLe

3: Compute the back-propagation error for xi by Eq. (13),
Eq. (14) and Eq. (17):

∂L j

∂xs
( j)

i

= ∂L j
c

∂xs
( j)

i

+ λ
∂L j

bm

∂xs
( j)

i

+ γ
∂L j

mmd

∂xs
( j)

i

∂L j

∂xt
( j)
i

= γ
∂L j

mmd

∂xt
( j)
i

+ η ∂Le
∂xti

4: Update the network layer parameters Θ:

Θ j+1 = Θ j − μ j ∂L j

∂Θ j

= Θ j − μ j (
ns∑
i=1

∂L j

∂xs
( j)

i

∂xs
( j)

i
∂Θ j +

nt∑
i=1

∂L j

∂xt
( j)
i

∂xt
( j)
i

∂Θ j )

Until convergence

M2M†: Multi-label source domain to Multi-label target domain
M2S‡: Multi-label source domain to Single target domain

adaption network DBM-DACNN are employed to adapt
features learned on RAF-ML to other related expression
databases: multi-label expression database JAFFE and three
commonly-used single-label facial expression databases,
namely CK+, SFEW 2.0 and MMI. As our methods are
generic, we further conduct extensive experiments on other
large-scale tasks in the Supplementary Material.

6.1 Data Pre-processing

We tested the algorithms on five diverse datasets that vary in
annotation, collection environment, image quality and prop-
erty of expressions (posed or spontaneous).

(1) RAF-ML is a real-world database which contains 4908
great-diverse facial images downloaded from the Inter-
net with manually annotated multiple labels. During
experiment, the dataset has been divided into a train-
ing set of 4090 images and a test set of 818 images to
ensure that results can be accurately reproduced.

(2) JAFFE (Lyons et al. 1998) is a lab-controlled database
which only contains 213 samples from 10 Japanese

females with posed expressions. Emotion intensity
distribution information for each sample have been pro-
vided in this dataset. Imageswith emotional expressions
have been used in our experiments.

(3) CK+ (Lucey et al. 2010) is a lab-controlled database
with 593 video sequences from 123 subjects across dif-
ferent culture. Only 309 sequences have been labeled
with six basic expression labels. We then extracted the
final frame of each sequences with peak formation,
resulting in 309 images.

(4) MMI (Valstar and Pantic 2010) is a lab-controlled
databasewhich includes 30 subjectswith non-uniformly
posed expressions and various accessories. We selected
the three peak frames in each sequence as basic expres-
sions, resulting in 528 images.

(5) SFEW 2.0 (Dhall et al. 2015b) is a real-world database
that contains images selected from different films with
spontaneous expressions, various head pose, age range,
occlusions and illuminations. The database is divided
into three sets for training, validation and testing. And
we used images in the training and validation parts that
are provided with expression labels.

All the facial imageswerefirst aligned to uniform template
using two eye centers and the mouth center, then cropped
to the 100×100 size and transformed to gray scale for the
following feature extraction and classification.

6.2 Architecture and Training Details

All of our models were trained base on an open source
deep learning framework, Caffe library (Jia et al. 2014). The
already aligned gray-scale images were firstly normalized
through dividing all the pixel value by 255. We then consid-
ered a network taking a fixed-size input (90×90) cropped
from images, which was for the purpose of data augmenta-
tion.

In order to compare different models fairly, we adopted
uniform trainingmethods and trained the uniform fundamen-
tal network architectures shown in Table 2 from scratch. The
dropout layer was applied to the last fully connected layers
with rate 0.3. The learning rate was initially set to 0.01 and
decreased by factor of 10 at 5k and 18k iterations, and we
stopped training at 20k iterations. Moreover, we chose the
stochastic gradient descent (SGD) as optimization and used
mini-batch with 64 samples. The momentum coefficient was
set to 0.9.

Themodel was regularized using weight decay.We set the
weight decay coefficient of convolution layer and first fully
connect layer to 0.0005 while the second fully connect layer
to 0.0025. MSRAwas used to initialize the weight parameter
of convolutional layer and fully connect layer, while the bias
parameter was set to 0 at the beginning of training. All of
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our models were trained on a NVIDIA Tesla K40 GPU and
it cost about 2 hours to train a model.

6.3 Multi-label Facial Expression Recognition on
RAF-ML

To study the multi-label expression in-the-wild problem, we
first conducted the multi-label classification experiments on
our RAF-ML database.

6.3.1 Comparison Features

For the comparison purpose, we implemented two hand-
crafted and four deeply learned features. For handcrafted fea-
tures, we employed Local binary patterns (LBP) (Ojala et al.
2002) and histogram of orientated gradients (HOG) (Dalal
and Triggs 2005). LBP descriptor applied the 59-bin LBPu2

8,2
operator and concatenated histograms from 10×10 pixel
cells, generating a 5900 dimensional feature vector. HOG
feature used the shape-based segmentation dividing the
image into 10×10 pixel blocks of four 5×5 pixel cells with
no overlapping. By setting 10 bins for each histograms, we
extracted a 4000-dimensional feature vector for each image.

To obtaining competitive baseline of the deeply learned
feature, a baseDCNN of the same architecture with DBM-
CNN was first trained on the RAF-ML training set only
using cross-entropy loss, and 2000-dimensional deep acti-
vation features were then extracted from the penultimate
fully connected layer. Previous studies Donahue et al. (2014)
and Sharif Razavian et al. (2014) also proved that well-
trained deep convolutional network can work as a generic
feature extraction tool with generalization ability for var-
ious visual recognition tasks. Motivated by this finding,
two widely-used pre-trained object recognition models,
namely VGG network (Simonyan and Zisserman 2014) and
AlexNet (Krizhevsky et al. 2012) were also employed to
directly extract features in our experiments. During param-
eter optimization on DBM-CNN, we conducted fivefold
cross-validation on the training set. And the value of k and λ

in DBM-CNN were set to be 10 and 0.01, respectively.

6.3.2 Multi-label Classifiers

To fairly compare the effectiveness of these features, sev-
eral widely used multi-label learning algorithms have been
employed: CalibratedLabel Ranking (CLR) (Fürnkranz et al.
2008), Random k-Labelsets (RAkEL) (Tsoumakas and Vla-
havas 2007), Multi-Label k-Nearest Neighbor (MLkNN)
(Zhang and Zhou 2007), Multi-Label learning using LOcal
Correlation (ML-LOC) (Huang et al. 2012), multi-label
learning with Label specIfic FeaTures (LIFT) (Zhang and
Wu 2015) and Multi-Label Manifold Learning (ML2) (Hou
et al. 2016). For CLR and RAkEL, we used J48 (C4.5) as
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(a) (b)

Fig. 6 Two-dimensional deep feature embedding by DBM-CNN on
RAF-ML, where the corresponding facial images continuously and
smoothly change in expression intensity, reflecting the intrinsic struc-
ture of expressionmanifold.By jointly preserving local structure and the

emotion distribution information of the deep features, the DBM-CNN
implicitly emphasizes the natural clusters in the data and preserves the
smooth change within cluster

the fundamental classifier. In addition, k is 3 and n is 12 in
RAkEL. For MLkNN, the number of nearest neighbors con-
sidered k is set to be 100 and the smoothing parameter is set
to be 1. For ML-LOC, the length of the loc code m is set to
be 15 and RBF kernel is used in the SVM model. For LIFT,
the ratio parameter r is set to be 0.1 and RBF kernel is used
in the SVM model. For ML2, the number of neighbors k is
set to be 7 and the parameter C1, C2 and λ are all set to be 1.

6.3.3 Evaluation Criteria

To report the performance comprehensively, several common-
ly-used evaluation criteria in multi-label learning were
applied. Denoting the number of examples is N , the num-
ber of labels is L . yi, j is the ground truth of the i th sample
on j th label. ŷi, j is the prediction of the i th sample on j th
label. We use | · | to denote the cardinality of a set, i.e., the
number of relevant labels in the set. The brief descriptions of
the measurements are given in the following:

(1) Hamming Loss: This criterion measures the degree of
inconsistency between the predicted results and the
ground truth of the sample, i.e., the possibility of a rel-
evant label is missed or an irrelevant is predicted. It is
formally defined as a fraction of the wrong labels to the

total number of labels:

1

NL

N∑

i=1

L∑

j=1

I(yi, j �= ŷi, j ).

(2) Coverage: This metric measures the number of labels
on average that should be included to cover all relevant
labels in the ranking queue. It is formally described as:

1

N

N∑

i=1

max j : yi, j=1 |{k: ŷi,k ≥ ŷi, j }|.

(3) One-error: This indicator describes the degree of the top-
ranked predicted label is not in set of true class labels
of the instances. For single-label learning, it means the
classification error. Formally, it is represented as:

1

N

N∑

i=1

I
(
ŷi,0 /∈ { j : yi, j = 1}) ,

where ŷi,0 is the top ranked label in ŷi .
(4) Ranking Loss: This criterion describes the average frac-

tion of label pairs miss-ordered of each instance, that is,
the probability that the irrelevant labels are ranked higher
than the relevant ones. It is formally described as:
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1

N

N∑

i=1

∣∣{( j, k): ŷi, j < ŷi,k, yi, j = 1, yi,k = 0
}∣∣

|yi ·|(L − |yi ·|) .

(5) Average precision: This criterion is based on the notion
of label ranking and reflects the average fraction of rel-
evant labels ranked higher than one other relevant label.
It can be formulated as:

1

N

N∑

i=1

1

|yi ·|
∑

j : yi, j=1

∣∣{k: yi,k = 1, ŷi,k ≥ ŷi, j
}∣∣

|{k: ŷi,k ≥ ŷi, j }| .

(6) Micro- and Macro-F1: The traditional F-measure (F1
score) can be interpreted as the weighted harmonicmean
value of precision and recall, where precision is the abil-
ity of the classifier not to label a sample that is negative as
positive and recall is the probability of a classifier to find
all the positive samples. For Micro-averaged method,
the individual dividends and divisors that make up the
per-class metrics are summed up to calculate an overall
quotient.AndMacro-averagedmethod simply calculates
the average of the binary metrics, giving equal weight to
each class.

(7) Micro- and Macro- AUC: AUC used here generically
refers to the area under the receiver operating characteris-
tic (ROC) curve. The ROC curve visualizes the trade-off
between sensitivity and specificity by plotting both val-
ues as a function of a varying classification threshold.
And the larger value of AUC is, the better performance
of the corresponding classifier is. Micro-AUC calculates
AUC on prediction matrix, and Macro-AUC calculates
AUC averaging on each label.

6.3.4 Experimental Results

Figure 6 shows the resulting 2-dimensional deep features
learned from our DBM-CNNmodel, where we attach exam-
ple face images with various expression intensity informa-
tion. And Table 3 enumerates the comparative multi-label
expression recognition performances of six features across
different classification algorithms on RAF-ML.

From the comparison results, we make three interest-
ing observations. First, the pre-trained models AlexNet and
VGG network which achieve quite reasonable results for
large-scale image recognition settings, are not discrimina-
tive enough for expression recognition tasks. And they even
perform worse than the unlearned handcrafted features in
some cases. Second, baseDCNN outperforms both the hand-
engineered features and pre-trained models by a significant
margin, which indicates that training on RAF-ML with
expression label information has learned useful emotion-
specific features that are suitable for multi-label expression
recognition. Last but not least, the proposed DBM-CNN

model achieves the most competitive performance under all
test cases that cover various evaluation criteria and different
classification methods, which suggests that the bi-manifold
loss indeed helps to enhance the discriminative ability of the
deep features by jointly preserving the local compactness of
both label manifold and feature manifold.

6.4 Discussions on DBM-CNN

In this section, we look deeper into the DBM-CNN and
explore different parameter settings and manifold selections
to see how these changes influence the performance onDBM-
CNN.

6.4.1 Parameter Sensitivity

Theobjective ofDBM-CNNconsists of two terms, i.e., cross-
entropy empirical loss and bi-manifold loss. Both of this two
regulations are of essential importance formulti-label expres-
sion recognition. The parameter λmakes a trade off between
this two parts, and has a great influence on the performance.
The parameter k in bi-manifold loss controls the degree of
local concentration in feature and label manifolds. If k is too
large, it will urge all samples in the training set to be together;
if k is too small, the bi-manifold loss will make no difference.

To investigate the effects of different values of hyper-
parameter λ and k used in DBM-CNN model, we conducted
two experiments on the multi-label expression recognition
task. The performances of these models on RAF-ML are
shown in Fig. 7. In the first experiment (left), we fixed k to 10
and varied λ in the set {0, 0.001, 0.005, 0.01, 0.05} to learn
different models. As the results show, the performances are
sensitive to the choice of λ, and λ = 0 is the case of simply
using the cross-entropy loss, which leads to relatively poor
performance of the deeply learned features. This confirms the
promoting effect of the jointly supervision of cross-entropy
loss and bi-manifold loss when a proper trade-off is chosen.
In the second experiment (right), we fixed λ = 0.01 and var-
ied k in the set {5, 10, 20, 40} to learn different models. We
can observe that the DBM-CNN accuracy first increases and
then decreases as k grows and we archive our best perfor-
mance when k is set to 10.

6.4.2 Manifold Choice

To have a closer look at the effectiveness of the bi-manifold
loss that characterizes the feature locality on both feature
and label space, we implemented the simplified versions of
DBM-CNN with only feature manifold loss or only label
manifold loss. Table 4 shows the comparative results on these
different schemes using MLKNN classification algorithm.
One can observe that both the feature and label manifold
loss can help improve the performance of the deep features
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Fig. 7 Multi-label expression recognition performances (Average Pre-
cision using CLR classification method) on RAF-ML for different
values of λ (left) and k (right). a DBM-CNN models with different
λ and fixed k = 10, b DBM-CNN models with different k and fixed
λ = 0.01

individually. Preserving the feature locality can enhance the
local clusters, andmaintaining the label smoothness can ben-
efit the multi-label classification. By jointly aligning these
two manifolds, the proposed bi-manifold CNN outperforms
both of them, which indicates that DBM-CNN indeed brings
in the superposed advantage that emphasizes the overlap of
these two manifolds.

6.5 Domain Adaption to Other Expression Datasets

Conducting expression recognition tasks across datasets is
challenging due to variances in acquisition and different set-
tings on people’s age range, gender, culture and the level of
expressiveness. Figure 8 exhibits example samples from dif-
ferent databases that vary in background, pose, occlusions,
illumination and subject identity, which may bias features.

To evaluate the generalization ability of our models to
extensive facial expression recognition tasks, we further
employed the learned deep manifold features from RAF-ML
to other related facial expression databases: JAFFE formulti-
label expressions recognition and CK+, MMI and SFEW
2.0 for basic expressions recognition. Faces from the source
domain and target domain were first aligned to the uniform
template using three reference points (two eye centers and
the mouth center).

6.5.1 Multi-label to Multi-label

For multi-label classification task on JAFFE, we applied a
threshold of 3 to obtain the label set of each image according
to the five-scale (1–5) intensity principle: relevant emotions
whose value is greater than 3 are set as 1 and the irrelevant
emotions are set as 0. After eliminating images whose inten-
sities for six expressions are all less than 3, we obtained 188
images for themulti-label classification. The same compared
features, classification algorithms and evaluation criteria in
Sect. 6.3 were used for JAFFE. Considering the only so Ta
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Fig. 8 Example images of multi-label databases. a RAF-ML and b
JAFFE, and single-label databases, c CK+, d SFEW and eMMI

much training samples in JAFFE, we adopted fivefold cross-
validation for multi-label classification.

6.5.2 Multi-label to Single-Label

When conducting basic expression recognition tasks on the
remaining databases, for the lab-controlled databases CK+
and MMI, we followed the subject-independent experimen-
tal principle and conducted fivefold cross validation; for
the real-world SFEW 2.0, we followed the rule in EmotiW
2015 (Dhall et al. 2015b): 921 images in the training set
are used for training and the learned classifier is then tested
on 427 images in the validation set. To avoid parameter
sensitivity, support vector machine (SVM) with linear ker-
nel implemented by LibSVM (Chang and Lin 2011) was
employed as the classifier. Given a training set {(xi , yi ), i =
1, . . . , n}, where xi ∈ R

d and yi ∈ {−1,+1}. With the
one-against-one strategy, test sample xi can be classified by
minimizing the objective:

min
w,b

1

2
||w||2 + C

n∑

i=1

max(0, 1 − yi (w
T xi + b)), (18)

where the tunable parameter C is a regularization term to
control the geometric margin and over-fitting.

6.5.3 Parameter Optimization

To optimize the hyper-parameters used in Algorithm 3, we
first fixed the parameters k and λ for the bi-manifold loss
according to the cross-validation results in Sect. 6.3, i.e.,
k = 10 and λ = 0.01. Then, we optimized the parameter

γ for the MMD loss according to the experimental results
on different target databases. Specifically, the value of γ are
0.1, 0.2, 0.15 and 0.25 for JAFFE, CK+, SFEW and MMI,
respectively. Moreover, for the multi-label domain to single-
label domain scenario, the value of η on the entropy loss is
set to 0.05.

6.5.4 Experimental Results

Table 5 reports the detailed experimental results of each
comparing feature on JAFFE. And Table 6 reports the per-
formance of our methods on single-label datasets compared
with other state-of-the-art results. In Table 6(b), the “SFEW
best (Kim et al. 2016)”, “SFEW second (Yu and Zhang
2015)” and “SFEW third (Ng et al. 2015)” indicate the best
single model result of the 1st, the 2nd and the 3rd participator
in EmotiW 2015, respectively. Note that, these participators
all trained their model with auxiliary supervised data from
SFEW. However, in our deep models, RAF-ML is the only
training data with supervised information. For fair compari-
son, we further trained our network with fine-tuning on the
training set of SFEW. The experimental results of DBM-
CNN and DBM-DACNN with fine-tuning on SFEW are
52.61% and 54.81%, which outperform the state-of-the-arts
method obtained.

From the comparison results in Tables 5 and 6, we can
make the following observations. First, DBM-CNN features
learned fromRAF-ML can achieve comparable performance
on other different expression databases. This indicates that
the RAF-ML can serve as a ‘generic’ database containing a
great diversity of training data for facial expression anal-
ysis. And the learned features can benefit from it due to
the particular emotion intensity information it provides. Sec-
ond, with cross-domain adaption technique that models the
biases between different databases, DBM-DACNN can help
enhance the performance for this cross-dataset task. Third,
bymaking the learned label distribution present a single peak
value, additionally implementing DBM-DACNN with the
entropy loss further improves facial expression recognition
performance on the single-label target datasets. Under the
circumstance, the proposed network can be used as an effi-
cient and effective feature extraction tool for a wide range
of facial expression recognition tasks, not only multi-label
emotion recognition but also basic emotion recognition, even
without the ground truth from target data.

7 Conclusions

In this work, a new real-world facial expression database,
RAF-ML, is presented to explore and address challenges of
multi-label expression recognition in the wild. Firstly, large
number of images have been downloaded from the Inter-
net using emotion-related keywords. Then, a crowd-sourced
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Table 5 Experimental results of
comparing features on JAFFE Evaluation criterion Comparing features Algorithm

CLR RAkEL MLkNN LIFT

Hamming loss↓ LBP 0.298 0.236 0.231 0.225

HOG 0.221 0.183 0.239 0.197

AlexNet 0.238 0.211 0.212 0.193

VGG 0.226 0.186 0.236 0.220

baseDCNN 0.173 0.148 0.202 0.164

DBM-CNN 0.168 0.146 0.169 0.152

DBM-DACNN 0.162 0.142 0.161 0.147

One-error↓ LBP 0.250 0.298 0.297 0.273

HOG 0.244 0.234 0.313 0.248

AlexNet 0.249 0.223 0.223 0.209

VGG 0.271 0.271 0.323 0.321

baseDCNN 0.191 0.154 0.175 0.163

DBM-CNN 0.132 0.117 0.138 0.126

DBM-DACNN 0.124 0.109 0.127 0.113

Coverage↓ LBP 1.749 2.101 1.866 1.756

HOG 1.696 1.681 1.975 1.802

AlexNet 1.689 1.854 1.685 1.625

VGG 1.801 1.718 1.923 1.852

baseDCNN 1.521 1.436 1.563 1.473

DBM-CNN 1.345 1.399 1.415 1.401

DBM-DACNN 1.236 1.247 1.369 1.341

Ranking loss↓ LBP 0.149 0.227 0.178 0.176

HOG 0.142 0.147 0.200 0.164

AlexNet 0.144 0.176 0.145 0.142

VGG 0.162 0.153 0.198 0.185

baseDCNN 0.109 0.096 0.119 0.106

DBM-CNN 0.078 0.084 0.089 0.075

DBM-DACNN 0.062 0.075 0.082 0.072

Average precision↑ LBP 0.809 0.757 0.783 0.793

HOG 0.822 0.832 0.766 0.802

AlexNet 0.822 0.813 0.831 0.833

VGG 0.795 0.817 0.766 0.802

baseDCNN 0.863 0.884 0.857 0.872

DBM-CNN 0.901 0.899 0.891 0.896

DBM-DACNN 0.936 0.913 0.906 0.911

For each evaluation criterion, “↓” indicates the smaller the better while “↑” indicates the
bigger the better. The best performance on each evaluation criterion is highlighted in bold
face
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Table 6 Comparison results of our models and other state-of-the-art
methods on three basic expression databases CK+, SFEW2.0 andMMI

Methods Accuracy (%)

(a) CK+
CSPL (Zhong et al. 2012) 88.89

FP+SAE (Lv et al. 2014) 91.11

AUDN (Liu et al. 2013) 92.05

AURF (Liu et al. 2013) 92.22

3DCNN-DAP (Liu et al. 2014a) 92.4

Inception (Mollahosseini et al. 2016) 93.2

Dis-ExpLet (Liu et al. 2016) 95.1

DBM-CNN 94.27

DBM-DACNN without entropy loss 95.18

DBM-DACNN with entropy loss 96.46

(b) SFEW 2.0

DL-GPLVM (Eleftheriadis et al. 2015a) 24.70

AUDN (Liu et al. 2013) 26.14

STM-ExpLet (Liu et al. 2014b) 31.73

Inception (Mollahosseini et al. 2016) 47.7

SFEW third (Ng et al. 2015) 48.5

SFEW second (Yu and Zhang 2015) 52.29

SFEW best (Kim et al. 2016) 52.5

DBM-CNN 50.12 (52.61)

DBM-DACNN without entropy loss 51.46 (53.79)

DBM-DACNN with entropy loss 52.33 (54.81)

(c) MMI

3DCNN-DAP (Liu et al. 2014a) 63.4

DTAGN (Jung et al. 2015) 70.24

CSPL (Zhong et al. 2012) 73.53

AUDN (Liu et al. 2013) 74.76

STM-ExpLet (Liu et al. 2014b) 75.12

F-Bases (Sariyanidi et al. 2017) 75.12

Inception (Mollahosseini et al. 2016) 77.6

Dis-ExpLet (Liu et al. 2016) 77.6

DBM-CNN 78.61

DBM-DACNN without entropy loss 78.90

DBM-DACNN with entropy loss 79.25

Bold values indicate the best recognition accuracy of each
database
For the last three methods on (b) SFEW 2.0 database, the
accuracy inside the parenthesis is achieved by fine-tuning
the correspondingmethods on the training set of SFEWaddi-
tionally

label annotation along with an optimization algorithm for
crowdsourcing was leveraged to pick out images with multi-
label expressions. Focusing on the ambiguity and continuity
of blended expressions, a novel deepmanifold featuremodel,
DBM-CNN, has been proposed which efficiently considers
both feature and label manifold information. Furthermore,
domain adaption technique was employed for DBM-CNN
to adapt the deep learned features from RAF-ML to other
diverse databases. In contrast with most previous studies
conducted on controlled data with archetypal emotions, this
paper has explored and addressed some of the challenges
faced when studying non-basic emotions in the wild. Exper-
imental results on RAF-ML and other related databases
demonstrate that our method has the capability of learning
more discriminative feature for a wide range of expression
analysis tasks. We hope that the release of this database will
encourage more researches on multi-label facial expression
recognition in the wild .
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