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ABSTRACT

Pose and illumination variations are very challenging for face recognition with a single sample per person
(SSPP). In this paper, we address this issue by a Pose-Aware Metric Learning (PAML) approach. Our pri-
mary idea is “from one to many”: Synthesizing many images of sufficient pose and illumination variability
from the single training image, based on which metric learning approach is applied to reduce these “syn-
thesized” variations at each quantified pose. For this purpose, given a single frontal training image, a
multi-depth generic elastic model and an extended generic elastic model are developed to synthesize fa-
cial images of the target pose with varying 3D shape (depth) and illumination variations respectively. To
reduce these “synthesized” variability, Pose-Aware Metric spaces are separately learnt by linear regression
analysis at each quantized pose, and pose-invariant recognition is performed in the corresponding metric
space. By preserving the detailed texture and reducing the shape variability, the PAML method achieves
an 100% accuracy on the Multi-PIE database under the test setting across poses, which is significantly
better than the traditional methods that use a large generic image ensemble to learn the cross-pose
transformations. On the more challenging setting across both poses and illuminations, PAML outperforms
the recent deep learning approaches by over 10% accuracy.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the pose-invariant face recognition problem with
a single training sample per person. This single-sample face recog-
nition (SSFR) problem is one of the major challenges in many real-
world applications on law enforcement and homeland security [1].
Theoretically, it is an extreme case of the small sample size prob-
lem that deteriorates conventional pattern recognition techniques.
As the supervised learning techniques are not applicable with-
out intraclass information, unsupervised techniques, which find the
low-dimensional embedding of the gallery data by ICA [2], PCA
[3] or their variants [4-6], have been widely applied. However,
these methods are suitable only for face representation and effec-
tive only for the recognition under constraint variations. Invariant
features (e.g. Gabor feature [7,8] and local binary patterns [9]) are
effective to increase the robustness to the lighting and expression
changes. Unfortunately, since they discard all information about
the 3D layout of the face, these feature descriptors are deficient
to counteract the unobserved pose variations.

Pose variation is widely regarded as a major challenge in the
automatic face recognition application. We envision the typical
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applications where enrollment of subjects is through frontal im-
ages with neutral light and expression (i.e., typical enrollment
images for most applications), but test images come from real-
world unconstrained scenarios with various poses and illumina-
tions. Since the face images under variable pose reside in a highly
nonlinear subspace, conventional subspace learning [8,10], mani-
fold learning [11], sparse representation [12-14]| and metric learn-
ing [15,16] methods designed for SSFR can not achieve satisfac-
tory performance. Previous SSFR approaches across pose differ-
ences mostly rely on a (external) generic training set with multiple
samples per person (MSPP) of similar viewpoints to the test sam-
ples [17,18]. Recently, deep learning techniques are used to learn
the cross-pose transformation for the unconstrained face based on
an external multi-view image ensemble [19]. Unfortunately, the
performance of these methods depends heavily on the represen-
tativeness of the generic training set, though they achieve state-of-
the-art performance on the Multi-PIE database [20] with the same
training and testing viewpoints. In contrast, the 3D model based
methods [21,22] is more flexible, since they do not rely on the sim-
ilarity of the training and testing viewpoints.

In this paper, we aim to address the pose-invariant SSFR prob-
lem by exploring the discriminative information in the gallery im-
ages, by the extensions of 3D generic elastic model [23,24]. In gen-
eral, our primary idea is “from one to many”: Synthesizing many
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images of the pose and illumination variability from one single
(frontal) gallery image, based on which the metric learning ap-
proach further reduces the “synthesized” variations at each quan-
tified pose. Following this idea, the contributions of paper are as
follows.

Firstly, we develop a multi-depth 3D generic elastic model (MD-
GEM) with variable depth to characterize the uncertainty of the 3D
shape [25], when rendering faces of different poses from a single
frontal image. To address this problem caused by the depth ambi-
guity of the face, we make a linear assumption on the depth chan-
nel of 3D generic elastic model with a single parameter, instead of
a single settled depth map of the conventional GEM [24].

Secondly, we propose an extended generic elastic model (E-
GEM) [26] that couples the 3D generic elastic model with the
quotient image [27] technique to synthesize faces under differ-
ent poses and illumination conditions from a single frontal im-
ages. Specifically, we develop a shape-free alignment for the quo-
tient image to achieve better face re-rendering results. This adap-
tive quotient image (AQI) is then used to generate the texture sur-
face of GEM to render varying lightings.

Thirdly, inspired by the “divide and conquer” strategy, we ad-
dress the pose-invariant face recognition problem by Pose-Aware
Metric Learning (PAML) using the synthesized training images of
each quantized pose separately. For each quantized pose, PAML
applies linear regression analysis technique [16] to transform the
synthesized training samples of one subject into a single point
of the metric space. In the recognition stage, we first estimates
the pose of probe face and then applies the corresponding pose-
specific metric to perform classification.

By the virtue of GEM, the proposed PAML method can take ad-
vantage of the full texture details of the gallery image under ar-
bitrary poses, which is essential for the highly accurate recogni-
tion. Extensive experiments on the Multi-PIE database [20] demon-
strates that our method is a superior SSFR solution for variable
pose, without using training set of external subjects to learn the
pose-invariant transformation. Specifically, on the test setting un-
der variable pose, the PAML method, based on the LBP descriptor
of the synthesized images via MD-GEM, achieves 100% accuracy on
the MPIE database. On the test setting across both poses and illu-
minations, PAML, based on the LBP descriptor of the synthesized
images via E-GEM, outperforms the recent deep learning methods
by over 10% accuracy. Moreover, PAML does not rely on any ex-
ternal data for training, while existing methods use a large generic
image ensemble of hundreds of people to learn the pose variations.

It should be noted that this paper is an extended work of our
previous conference papers [25,26]. In this paper, we present the
comprehensive related works, more technical details on MD-GEM
[25] and E-GEM [26], and a combined face synthesis algorithm
(Algorithm 1). Moreover, we also integrate them into the proposed
PAML framework to obtain much better performance than our pre-
vious work. In particular, we demonstrate the 100% accuracy of
MD-GEM on the additional pose-invariant recognition experiments
of MPIE database.

2. Background

Many interesting improvements on face recognition have been
reported in the literature to handle pose variation. Robust feature
descriptors are expected to be more robust than pixel intensity to
counteract the appearance change caused by poses. LGBP [28] is a
high-dimensional face descriptor which first convolves the images
by a family of Gabor kernels followed by LBP coding of the filtered
images. LE+LDA [29] method encodes the micro-structures of the
face by a new learning-based encoding method, which can auto-
matically achieve very good tradeoff between discriminative power
and invariance. CRBM+LDA [30] learns the local descriptor by local

Algorithm 1 Image synthesis via MD-GEM and E-GEM.

Input: A frontal facial image, a 3D generic model with depth pa-
rameter «, a bootstrap set of images with a unified shape, tar-
get pose angles

Output: The ensemble of synthesized images at target poses

1: Locate the 77 feature points by off-the-shelf face alignment
method or manual labeling.

2: Compute dense correspondence between the input image and
3D-GEM according to the delaunay triangulation of feature
points, and then allocate the depth according to the parame-
ter a.

3: Transform the input face to the unified shape of the bootstrap
set. Solve Q and light coefficient x; according to Eq. 4, and then
stimulate each illumination by setting lighting coefficient I;. Fi-
nally, transform the re-rendered facial images back to the orig-
inal shape.

4: Map the texture from the re-rendered images with various il-
luminations to the 3D-GEMs according to the dense correspon-
dence obtained in Step 2.

5: At each target pose, render the synthesized images with the
3D-GEMs of input depth (@) and lighting (l;) parameters.

Algorithm 2 Pose-Aware Metric Learning.

Input: The training set with a frontal training image per person,
quantized pose angles

Output: The transformation matrix WP for each quantized pose

1: Synthesize a predefined number of images at all quantized
poses for each frontal gallery image using Algorithm 1.

2: Align all the synthesized images by the predefined landmarks.
Extract feature vectors of the aligned faces.

3: At each quantized pose, compute the transformation matrix
W in Eq. 7 using the feature matrix of the synthesized im-
ages at that pose.

convolutional restricted Boltzmann machines, which exploits the
global structure and maintains the robustness to small misalign-
ments.

Several statistical learning methods are proposed by leveraging
the correlation among features across poses. CCA [31] aims at pro-
jecting the images of different poses onto a common feature space
where the correlation between them are maximized. PLS method
[32] attempts to project samples from two poses to a common la-
tent subspace, with one pose as regressor and the other pose as
response. GMA method [33] is a generalized multi-view analysis
method attempting to project the images of all poses to a discrim-
inative common space, where pose variations are minimized. Li
et al. [18] represented a test face as a linear combination of train-
ing images and utilized the linear regression coefficients as fea-
tures for face recognition.

3D model based methods provide straightforward solutions for
pose-invariant recognition. The 3D morphable model [34] is built
using PCA on 3D facial shapes and textures acquired from a laser
scanner. The learned 3D face model is reconstructed by fitting
the model to the input 2D image. Pose-invariant recognition can
be performed by transforming posed face images to the frontal
view or comparing the reconstruction coefficients of PCA. How-
ever, the PCA subspace may not be accurate enough to character-
ize the detailed textures of test faces. Besides 3DMM, several 3D
model based methods are proposed to rotate the non-frontal face
to the frontal one. Different from 3DMM, VAAM method [35] pro-
poses a fully automatic 3D pose normalization method, which can
synthesize a frontal view by aligning an average 3D model to the
input non-frontal face based on the view-based AAM. We recently
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improve this work by recovering the lighting condition of the oc-
cluded face part [21]. MDF method [18] generates a virtual image
at the pose of the gallery image for the probe image through the
Morphable Displacement Field, and then matches the synthesized
face with the gallery faces. StackFlow method [36] warps a non-
frontal face image to the fontal one progressively through one or
more correspondences between them at the patch level.

Recently, deep learning approaches have achieved premier ac-
curacy on recognition by learning cross-pose transformation. DAE
method [37] learns pose-robust features by modeling the com-
plex non-linear transform from the non-frontal face images to
frontal ones through a single deep auto-encoder. Further, SPAE
method [38] proposes to learn the non-linear transformation from
the non-frontal faces to the frontal faces in a progressive way, in
which each stack learns the transformation across a small angle
in a supervised manner. The face identity-preserving (FIP) features
[39] are learned by a deep network that combines the feature ex-
traction layers and the reconstruction layers. The former layers en-
code a face image into the pose-invariant FIP features, while the
latter transforms them to an image in the canonical view. RL+LDA
method [39] further improves the performance by applying local
descriptors and LDA to the frontal reconstructed images. Recently,
a multi-view perceptron (MVP) is proposed to untangle the iden-
tity and pose by using random hidden neurons. CPF method [19] is
a recent work which can rotate the input face to a target-pose face
image with a multi-task deep neural network.

In the past, it is believed that the true 3D shape must be
estimated faithfully by 3D Morphable model [34] for the pose-
invariant recognition task. Unfortunately, the reconstruction pro-
cess is unstable for the single image with natural lighting. 3D
generic elastic model (GEM) is introduced in [23,24] as a low
computational but efficient 3D modeling method. The underlying
assumption is that face depth information does not dramatically
change among individuals as long as the corresponding 2D face
feature points are aligned. Although this assumption seems strong,
experimental results show that coarse face shape is good enough
to achieve reasonable results. In this work, we improve the basic
GEM in order to address the SSFR problem across compound varia-
tions of poses and illuminations. An advantage of GEM is the capa-
bility to preserve original 2D texture in the synthesized images, so
that the local texture can be accurately discriminated. Pose-Aware
Metric Learning is developed to address the recognition problem
of each quantized pose separately, because a single linear subspace
cannot characterize the images under variable pose.

3. GEM extensions with shape and illumination variability

To address the problem on image synthesis from a single
frontal training face, this section describes two extensions of 3D
generic elastic model: (1) multi-depth GEM (MD-GEM) with shape
(depth) variations and (2) extended GEM (E-GEM) with illumina-
tion variations. MD-GEM improves the GEM model by transferring
a single depth map to variable ones with a “depth” parameter. E-
GEM combines the 3D generic elastic model (pose synthesis) and
the quotient image (lighting synthesis) [27] together to simultane-
ously address the lighting and pose synthesis .

Due to the space limits, some related techniques, such as
dense correspondence and quotient image, may only be briefly
introduced, and the readers can refer to Prabhu and co-workers
[24,27,40] for the details of the background knowledge.

3.1. Multi-depth GEM with a single control parameter [25]

3D generic elastic model provides a practical method for gen-
erating the 3D model from a single frontal face according to a

generic 3D facial depth map [24]. In this model, 2D (u, v) informa-
tion needs to be extracted and depth information can be recovered
by morphing a depth-map based on the 2D facial observations.
Given an input face and a generic 3D model, there are two stages
to recover the 3D model of the input face: dense correspondence
and depth allocation [24]. The dense correspondence step finds out
the pixel-wise correspondence from the input 2D image to the 3D
reference model, and the depth allocation step simply allocates the
depth information from the reference model to the corresponding
location of 2D image. In the following, we describe the procedures
of each step.

Dense correspondence: Firstly, sparse facial landmarks are de-
tected and each face (I) is partitioned into triangular polygons
(P) by Delaunay Triangulation. Similarly, the generic depth-model
(D) is partitioned into a mesh (M) from the predefined landmark
points. The corresponding points of input image and generic depth
map are registered by means of the landmarks as illustrated in
Fig. 1. The point density increases simultaneously with loop subdi-
vision, which can be considered as a process of establishing dense
correspondence between the input mesh and the depth model.
In our implementation, 77 fiducial facial landmarks of the in-
put frontal face are automatically detected by SIFT feature based
STASM [41]. About 17500 dense vertices and 35000 triangles are
obtained after 4 times of loop subdivisions. The procedures are
similar to those used in [24,40], which are illustrated in Fig. 1.

Depth Allocation: The prior depth-model function (F), sampled
at the spatial locations of mesh (M), is warped onto the input tri-
angle mesh (P) by a piece-wise affine transformation for the pur-
pose of depth estimation. In this manner, each point in the input
image has an exact corresponding point in the depth-model. Based
on this correspondence, we allocate the depth information for the
3D shape of the input face. Finally, the texture information of the
input image I(P(u, v)), sampled at the spatial locations of P(u, v),
is mapped onto the 3D shape. The variables for reconstructing 3D
face model can be represented by:

S = (u,v,z=F(M(i, D)) (1)

T =I1(P(u,v)) = Ruvz Guuvz Buvz) (2)

where (i, 7) in M is the registered points (u, v) in image P, S and
T are the shape and texture of the 3D model for the input face.

Different from the GEM with a single depth-map in GEM [24],
we attempt to generate multiple realistic depth-maps of the hu-
man face for a single frontal image. The new model is called multi-
depth GEM (MD-GEM). Specifically, we assume that the depth map
of a specific face is a linearly stretched or flatten version of the av-
erage depth map of large populations. The multi-depth GEM offers
the depth information with the function F(M({, 7)) of the spatial
location (i, ¥) of the mesh M. Referring to the depth map in [24],
the depth-map function F(M(il, 7)) is defined as a linear function
of a depth parameter o as follows.

F(M(@, 1)) = Zyes + (DM@ 1)) = Zef) 3)

where z,, is the depth value of a fixed reference point (We empir-
ically select the corner of the nose).

Fig. 2(a) shows six MD-GEMs with the varying depth param-
eter o that decides the depth of facial surface. The setting o =
1 equals to the conventional GEM based on the average depth
map [24]. The setting a >1 or o <1 generates linearly stretched
or flattened depth map of average face in z axis, respectively.
Fig. 2(b-d) show six different generic depth maps with o =
{1.1,1.0,0.9,0.8,0.7,0.6}, and one can see from the figure that
natural face surfaces can be generated by controlling a single pa-
rameter «. Example rendered images of varying a-depth maps are
shown in Fig. 2, which suggests that the plausible 3D structures of
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Input Image
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A |

STASM
Landmark
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4x Mesh Subdivision ~ 4x Mesh Subdivision “
Dense
Correspondence

Input dense mesh Generic dense mesh|

Fig. 1. The dense correspondence establishes the pixel-wise correspondence from the input 2D image to the 3D reference model. It is determined by the loop subdivision of
the triangular polygons. Specifically, based on the detected shape (landmarks), both the face image and generic model are partitioned into a mesh of triangular polygons. After
registering points between the input image and the generic depth-map, one can increase the point density simultaneously using Loop subdivision. Dense correspondence
between the input mesh and the depth-model is established after 4 times of loop subdivisions.

() (d)

Fig. 2. We design an « depth function to generalize the generic elastic model to describe variable face surfaces. (a) Illustration of the o depth function that decides the
depth of the generic depth-map. When « < 1, the generic depth-map becomes flatter. Otherwise, when « > 1, the generic depth-map becomes deeper. Given a single frontal
image, it is difficult to infer the accurate 3D model for each face, but our «-depth function can derive several realistic 3D model with certain values of «. (b-d) show
example images of three faces from the frontal view and the yaw angle of 45°. (b) & = 1.0 is most realistic, (c) o = 0.8 is most realistic, (d) & = 0.6 is most realistic.
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Table 1
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Comparative recognition rates under single-session testing of the Multi-PIE database.
“v"" indicates the method needs to learn from the additional 100 subjects of the Multi-
PIE; “ - ", otherwise, indicates the method is database independent and may generalize

well on complex environment.

Methods —45° -30° —15°  +15°  +30°  +45° Avg Train
VAAM [35] 74.1 91.0 95.7 95.7 89.5 74.8 86.8 -
MDF [18] 78.7 94.0 99.0 98.7 92.2 818 90.7 v
PLS [32] 511 76.9 88.3 883 78.5 56.5 733
CCA [31] 533 742 90.0 90.0 85.5 48.2 735 v
GMA [33] 75.0 74.5 82.7 92.6 87.5 65.2 796 v
DAE [37] 69.9 81.2 91.0 91.9 86.5 74.3 825 v
SPAE [38] 84.9 92.6 96.3 95.7 94.3 84.4 914 v
RR [18] 97.0 97.0 100 100 97.0 92.0 968 v
RL+LDA [39] 978 98.6 100 100 98.6 98.4 984 v
PAML (ours) 100 100 100 100 100 100 100 -

Table 2

Comparative recognition rates under multi-sessions testing of Multi-PIE database. “v"” in-
dicates the method needs to learn from the additional 200 subjects of the MultiPIE; “ - ”,
otherwise, indicates the method is database independent and may generalize well on com-

plex environment.

Methods —45° -30° —15° +15° +30° +45°  Avg Train
LGBP [28] 377 625 77 83 592 361 593 -
VAAM [35] 741 91 957 957 895 748 869 -
MDF [18] 93 987 997 997 983 936 972 v
LE+LDA [29] 869 955 999 997 955 818 932
CRBM+LDA [30] 803 905 949 964 883 752 876
FIP+LDA [39] 934 956 100 985 964 898 956 v
RL+LDA [39] 956 985 100 993 985 978 983
MVP [46] 934 100 100 100 993 956 981
PAML (ours) 983 993 100 100 100 983 993 -
real facial images can be characterized by the simple «-depth func- 0 Y(u,v) 4)
y(u) =

tion. Each face has a certain « that is realistic to the corresponding
3D shape. Although one can not infer the proper o from a single
frontal image, we attempt to limit the variability by mapping the
synthetic images of varying « together into the feature space for
accurate recognition.

3.2. Extended GEM with illumination variability [26]

In order to synthesize the illumination changes over 3D generic
elastic model, we develop an Extended GEM (E-GEM) that overlays
the texture of the quotient images [27] on the surface of the 3D
generic model to characterize the compound variation of poses and
illuminations. Quotient Image method [27] is a classical technique
of face re-lighting. As a class of object, human face is considered
as Lambertian surface with a reflection function: p(u, v)n(u, v)Ts,
where 0< p(u, v)<1 is the surface reflectance (gray-level) associ-
ated with point u, v in the image, n(u, v) is the normal direction
of the surface associated with point u, v in the image, and s is the
light source direction (point light source) and whose magnitude is
the light source intensity. In [27], the assumption on Ideal Class of
Object, i.e., objects that have the same shape but differ in surface
albedo, is defined. Under this assumption, the Quotient Image Qy(u,

v) of face y against face a is defined: Qy(u,v) = gﬁgzz;

range over the image. Thus, Qy depends only on the relative sur-
face texture information and is independent of illumination.

The derivation of quotient image is based on a bootstrap set
(reference set) consisting of L (L is small) faces under M unknown
independent illumination (totally M x L images). Given this boos-
trap set, the quotient image Q, of an input image Y(u, v) can be
computed as

where u, v

Z?”:] Aj(u.v)e;’

where f\j(u,v) is the average image under illumination j of the
bootstrap set and ¢; can be derived from the bootstrap set images
and the input image Y(u, v). See [27] for more details of deriving c;.
According to the quotient image Q, computed by Eq. (4), the image
space created by the input face, under all possible illuminations, is
spanned by

Ys=Qy® ZAjlj (5)
j

where ® denotes the Cartesian product(pixel by pixel multiplica-
tion). In our experiments, we utilize the “one-hot” coefficient [; = 1
for j=1,..., M to simulate each illumination on the input face re-
spectively.

The basic assumption of quotient image is that all involved
objects share the same shape. Although human faces share sim-
ilar global shape, they still have non-negligible local individual
shape variations. The commonly used face alignment process in
[27] (global affine transformation) can not well satisfy the defi-
nition of Ideal Class of Object. The assumption on the ideal class
could be better satisfied if we perform piecewise correspondence
between images (say frontal images) of the class. The piecewise
correspondence of triangulations compensates for the shape varia-
tion and leaves only the texture variation. In our implementation,
we first warp all images into a generic shape by piecewise affine
transformations, shown in Fig. 3, and then apply the quotient im-
age technique to the shape-free images. After quotient image is de-
rived and the re-lighting images are rendered, we warp the relight-
ing images back to the original shape. Example re-rendered results
are demonstrated in Fig. 4. Since this procedure makes the shapes
of the images adapted to the basic assumption of the quotient im-
age, we called it adaptive quotient image (AQI).
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Fig. 3. The procedure to generate the “shape-free” image, which transforms the image by the piecewise affine warp according to the delaunary triangulation. All images
after this procedure are assumed to have the same shape. The proposed adaptive quotient image technique maps all images to the “shape-free” image before the derivation

of the quotient image.

Single Frontal
Input Image

Bootstrép Set

Re-rendered
Images

3D Models

Fig. 4. Visual illustration of overall pipeline of Extended GEM based image rendering with adaptive quotient image. The 3D Models generated by GEM are rendered at yaw

0°, —30°, +30° from top to bottom.

Based on the same assumption of the generic face shape, GEM
and AQI are two complementary models that characterize the pose
and illumination variations of human face respectively. Using the
same delaunary triangulation based on the same landmarks, it is
natural to perform the dense correspondence between the AQI and
the 3D generic model. With such a dense correspondence, the tex-
ture of AQI can naturally be mapped to 3D surface of GEM to char-
acterize the variable illumination. The pipeline of image augmen-
tation of Extended GEM is summarized in Fig. 4. With Adaptive
Quotient Image, we first virtually re-render the input image un-
der variable lighting, and then construct corresponding 3D models
from the re-lighting images by 3D GEM. These 3D models are ren-
dered at different views to synthesize images under various pose

and illumination conditions. In this manner, with a single 3D shape
prior, we make pose and illumination augmentation with only one
gallery sample, given a small bootstrap set of images. Synthesized
images of one subject under 7 target poses and 20 illuminations
are shown in Fig. 5. The detailed procedures are summarized in
Algorithm 1.

4. Face recognition via Pose-Aware Metric Learning

Given a single frontal gallery image, the extended generic
elastic model synthesizes facial images under varying 3D shape
(depth) and illumination variations at the target pose. To reduce
the shape and illumination variability, Pose-Aware Metrics are indi-
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Fig. 5. E-GEM based synthesized images of a single individual to simulate the illumination and pose conditions in the Multiple-PIE database. The synthesized images have
been divided into seven pose subsets with 20 light source directions. Every pair of columns shows the images from a particular pose (—45 through 45° from left to right).
Note that all the images were generated from the a single frontal image using our Extended GEM with the depth parameter « = 1.

vidually learnt by linear regression analysis [16] of every quantized
pose. Pose-invariant recognition is performed by the metric space
at the corresponding pose. This section introduces the recognition
pipeline and the linear regression analysis [16] technique used in
PAML.

4.1. Pose estimation and alignment

Given a testing (non-frontal) face, five facial fiducial landmarks
are automatically located by using face alignment algorithms’ such
as SDM [42,43], including the centers of two eyes, the tip of the
nose, two corners of the mouth. A linear regression framework,
enlightened by the face 3D alignment process in [44], is employed
to conduct pose estimation based on the five landmarks. Although
this method provides a weak pose estimation, experimental results
shows that it is sufficient to assure reasonable recognition accu-
racy.

Each 3D model in the database is rendered at the estimated
pose and 2D images are synthesized after 2D projection. The vir-
tually rendered images and probe image are aligned by an affine

1 In the experiment, we have manually labeled the feature points on the failure
cases of face alignment.

transformation, in order to compensate for scaling and in-plane
rotation, using two eyes and the midpoint of two mouth corners.
Specifically, all faces are aligned to 65 x 75 pixels with eyes po-
sition of (15, 20) and (50, 20) and the midpoint of mouth cor-
ners position of (32.5, 60). Example aligned images are show in
Fig. 6(a).

4.2. Recognition via Pose-Specific Metric

The 3D continuous pose space can be divided into a limited
number of quantized poses according to the requirement of the ap-
plication. For example, our experiments render the synthetic faces
along the yaw with a range of +50° 2 at steps of 5° (see Fig. 6(a)).
At each quantized pose, we render the 3D models with virtually
varying shape and illumination of each gallery subject as the train-
ing set. The basic assumption of PAML is that, at each pose angle,
the synthesized images of a subject with varying shapes and il-
luminations span a low dimensional subspace. Based on this as-
sumption, PAML learns a transformation matrix W(P) by which the

2 In the experiment, we apply the affine transformation (determined by centers
of two eyes and mouth) to align the face images. The alignment is applicable to
the face under relatively small pose angles. If the pose angle is large, the similarity
warp designed in [45] can be used.
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Fig. 6. (a)Aligned faces of quantized poses (yaw —50° to +50° in step of 5°) (b)The geometric interpretation of a Pose-Aware Metric space at the yaw 45° pose. Three classes
of rendered images under the same pose, but with varying 3D depths (@ = {0.9, 1.0, 1.1}) and lightings, are mapped to [1; 0; 0]", [0; 1; 0], [0; O; 1]” respectively.

Fig. 7. Example aligned facial images used in our experiments. (a) The images of
three subjects in the MultiPIE single-session testing. (b) The images of one subjects
in MultiPIE multiple-sessions testing, which display significant appearance change
by time interval.

illumination subspace of each subject (at each pose) is mapped
to the metric space where the images of each subject locate at
the corresponding class indicator vector. Fig. 6(b) illustrates a geo-
metric interpretation of this mapping at the yaw pose of 45°. The
purpose of this mapping is to eliminate the illumination uncer-
tainty under a pose by mapping the illumination subspace to a
single point. Moreover, this mapping could enhance the discrimi-
nation among similar faces by mapping them to equidistant targets
(Fig. 7).

Linear regression analysis (LRA) is a parameter-free method that
has achieved state-of-the-art performance on the SSFR for frontal
face images [16]. In the PAML framework, we extend this tech-
nique to solve the metric learning problem at each quantized pose
separately. Specifically, For the recognition of K subjects, count-
less equidistant embeddings are feasible by shifting and rotat-

Table 3
Comparison of training images.

Methods Training images

Li [18] 7cm100 Identities x 7 Poses x 20 Illuminations, Totally
14000 Images

RL [48]+LDA

CPF [19]

PAML 12 Identities x 1 Frontal Pose x 20 Illuminations, Totally

240 Images

ing a K—1 regular simplex. For the efficiency purpose, the class
indicator vector y, e RK is applied to represent the ith subject,
where y; =[O0, - 0]" has a single 1, i.e. its ith component.
This setting of equ1dlstant embedding avoids the time-consuming
nearest-neighbor search for recognition, since the nearest proto-
type can be efficiently found by the maximum element of the vec-
tor.

At each quantized pose, let X, € R’*N, k=1,...,K denote the
stacked feature vectors of the N synthesized images (Under vari-
able depth and illumination) for the subject k. Using class in-
dicator targets y; as multivariate outputs of the gallery samples

X =[X1, - . Xg] e RIX(NK) " we can formulate the linear regression
model in matrix notation
T=WX+E (6)

where T is a Kx NK target matrix whose columns are the one-
hot class indicator vectors, W is a K x | mapping matrix and E =
[e1, e, -+, enk] is a K x NK matrix of errors. In order to minimize
the mean square error, i.e. Tr{ETE}, the optimal transformation ma-
trix can be readily computed as follows.

W = Tx' (7)

where X{ denotes the generalized inverse of X. For each quantized
pose indexed by superscript p, the optimal transformation matrix
W e RKx! is derived in the identical manner.

When a novel test image near the quantized pose p is presented
to the LRA based classifier, the feature vector of the image, denoted
by x, is first extracted and then normalized to zero mean and unit
length. The response vector r € RX is derived by a linear transfor-
mation: r = W(P)x, Finally, the recognition result is determined by
the largest component of the response vector:

= arg max r@® (8)
where 19 denotes the ith element of the response vector r.

For automatic recognition, we estimate the pose of the probe
image using head pose estimator, find the nearest quantized pose
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Table 4
Average Recognition Rate (Percent) on Different Poses under Setting-IIl. The
Best Performance Are in Bold. Pose Strategy is as PS for simplification.

Methods —45° -30° —15°  +15° +30° +45°  Avg.
Li [18] 63.5 69.3 79.7 75.6 71.6 54.6 69.3
RL [39]+LDA 67.1 74.6 86.1 833 753 61.8 74.7
CPF [19] 73.0 817 89.4 89.5 80.4 70.3 80.7

PAML (PS #1)  76.5 88.3 98.5 99.2 95.4 84.3 90.4
PAML (PS #2)  76.3 89.5 97.0 98.3 94.1 85.1 90.1
PAML (PS #3)  79.0 90.3 97.0 98.3 94.7 874 911

p, and recognize the image using the corresponding Pose-Aware
Metric (called pose quantization strategy). The recognition can
be readily conducted by the linear regression: r = WPx. Also, an-
other strategy called pose quantization plus search range can
be defined as using the corresponding Pose-Aware Metrics of the
two nearest quantized poses to determine the recognition result.
For our LRA method, the fusion is naturally conducted by simply
adding up the output scores of each gallery identity. Given a weak
pose estimator, this strategy is expected to compensate for the in-
correct estimation and obtain more accurate recognition rate.

5. Experiments and results

In this section, we evaluate the effectiveness of the proposed
PAML method on the Multi-PIE face database [20]. The Multi-PIE
face database contains 754,204 images of 337 identities, where
each identity has images captured under 15 poses and 20 illumi-
nations in four sessions during different periods.

5.1. Recognition across poses by MD-GEM

We evaluate pose-invariant face recognition using two com-
monly used settings as follows.

o Single-session Setting adopts images of different poses and neu-
tral illumination marked as ID 07. Only the images in session
one are used, which only has 249 identities. The images of the
first 100 identities are for model training (PAML does not use
these external training data), and the images of the remain-
ing 149 identities for test. In the test stage, one frontal image
of each identity in the test set is selected in the gallery. The
remaining images from —45° ~ +45° except 0° are selected as
probes.

Multi-sessions Setting adopts images of different poses and neu-
tral illumination marked as ID 07. It evaluates the robustness to
pose variations. For Setting-I, the images of the first 200 identi-
ties in all the four sessions are chosen for training (PAML does
not use these external training data), and the images of the re-
maining 137 identities for test. During test, one frontal image
(i.e. 0°) of each identity in the test set is selected to the gallery,
so there are 137 gallery images in total. The remaining images
from —45° ~ +45° except 0° are selected as probes.

These two settings have been widely used to evaluate pose-
invariant face recognition, and our experiments compare our
PAML method to a few existing methods, including VAAM [35],
MDF [18] StackFlow [36], CCA [31], PLS [32], GMA [33], LGBP
[28], LE+LDA [29], CRBM+LDA [30], RR [18], DAE [37], SPAE
[38], FIP+LDA [39], RL+LDA [39], and MVP [46]. For PAML, the
MD-GEM renders N =6 images with the depth parameter o =
{1.1,1.0,0.9,0.8,0.7,0.6} for each gallery subject at each of the
6 test poses. The first experiment involves only the facial images
of session 1 in which the gallery and probe images are collected
at the same time under identical lighting condition. The purpose
is to evaluate the accuracy of the 3D PAML model for off-pose 2D

matching, assuming the pose-angle of the face image is given in
the recognition stage. All images that we selected are converted to
gray scale. To characterize the detailed texture of the synthesized
images, the LBP feature (LBszl histograms of the cells of 3 x 3 pix-
els [47]) is extract to represent the images for PAML.

Table 1 enumerates the comparative accuracy of 10 methods on
the experiment of setting-I. Statistical subspace learning methods,
such as PLS, CCA, GMA, perform the worst since they only lin-
early learn the association among the images of different poses.
Considering that this test has not introduced any real-world fac-
tors (lighting and time changes), the accuracy lower than 80% in-
dicates the subspace analysis of 2D images may be not a suitable
technique to address pose-invariant recognition problem. By ex-
ploiting 3D information learned from the 100 subjects of the same
database, VAAM and MDF improve the accuracy to about 90%. This
demonstrates the usefulness of 3D model but it may not be sat-
isfactory, especially considering the Single-session setting of this
experiment. Basic deep learning method such as DAE reports a
reasonable accuracy of 83%, while recent advanced deep learning
methods, such as SPAE, RL+LDA, boost the accuracy to 91% and
98%, respectively. These results seem promising, but one should be
aware of the same pose angles of the 200-subject training set and
the test set. This concern becomes evident when a simple ridge re-
gression method based on the same training data can achieve 97%
accuracy.

The proposed MD-GEM based PAML method achieves perfect
(100%) accuracy on all tested pose sets, which clearly validates the
superiority of PAML over other 3D models for off-pose 2D match-
ing. More importantly, different from other methods based on ho-
mologous training data, PAML could generalize equivalently to any
target pose, since it does not rely on external training data outside
the gallery. The perfect accuracy comes mainly from the 3D struc-
ture of MD-GEM, rather than the implicit correlation between the
training and the test set.

The second experiment involves the images of all the four ses-
sions of the Multi-PIE database. The purpose is to evaluate the ac-
curacy of the 3D PAML model for off-pose 2D matching, as well as
the robustness against other real-world factors, such as appearance
changes caused by mustache and glasses. Table 2 enumerates the
comparative accuracy of 9 methods on the experiment of setting-IL
LGBP is a highly discriminative descriptor for frontal face match-
ing, but reports the lowest accuracy of 59%. By applying feature
learning techniques to the 200-subject training set, LE+LDA and
CRBM+LDA methods boost the accuracy to 93% and 88% respec-
tively. However, these training models may not generalize well to
other test poses or data sets. Similar to the first experiment, tradi-
tional 3D based methods, such as MDF, achieve very high accuracy
(97%) but are surpassed by recently proposed deep learning based
methods, such RL+LDA and MVP.

Though previously reported accuracies on this setting are al-
ready very high, our PAML method can further reduce the recogni-
tion errors by over a half (from 1.9% to 0.7%). At the most challeng-
ing pose (45°), it outperforms the other methods by a margin of
3% accuracy. Note that all the other methods have utilized a 200-
subject training set to adapt the model to test poses, while PAML
trains the class model only on the single gallery image per class.

It should be noted that the comparison among these techniques
may be unfair, because their involved face alignment procedures
are not identical.® Indeed, while some competitors such as [35] are
fully automatic approaches, our results are semi-automatic because
we have manually adjusted the feature points in case of the failure

3 We would like to thank the reviewer for pointing out this unfair factor. The
method in [35] clearly claimed that their pipeline was fully automatic. However,
other methods have not clearly stated whether manual corrections are involved or
not during the face detection and alignment.
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Table 5

Average recognition rate (percent) on different illuminations conditions under Setting-IIl. The best
performance are in Bold. Pose Strategy is as PS for simplification.

Methods 00 01 02 03 04 05 06 08 09 10

Li [18] 515 492 557 627 795 883 975 97.7 91.0 79.0
RL+LDA [39] 728 758 758 757 757 757 757 757 757 75.7
CPF [19] 59.7 706 763 791 85.1 894 913 923 906 865

PAML (PS #1) 857 780 823 878
PAML (PS #2) 858 751 813 871
PAML (PS #3) 874 76.4 827 877

Li [18] 648 543 477 673
RL+LDA [39] 757 757 757 734
CPF [19] 812 775 728 823

PAML (PS z1) 890 830 757 933
PAML (PS 22) 886 813 765 920
PAML (PS 3) 89.8 841 777 927

925 960 987 990 974 95.1

93.0 967 991 99.0 98.0 950
947 971 994 996 980 955
15 16 17 18 19 Avg.

67.7 75,5 695 673 508 69.3
734 734 734 729 729 747
842 865 8.9 829 592 807
947 956 953 927 852 904
947 952 947 930 851 90.1
953 969 959 949 858 911

of detection. In this experiment, there are only about 1% of failure
cases when using our extended SDM method [43] for face align-
ment, and the accuracy drop from 100% to 98.7% (single-session
setting) and from 99.3% to 97.6% (multi-sessions setting) if a fully
automated pipeline is applied. As expected, our accuracy is much
higher than another fully automatic method [35]. Moreover, one
can expect the accuracy loss would gradually decrease with the
development of the face alignment algorithms in the future.

5.2. Recognition across pose and illumination by E-GEM

The third experiment is conducted under the Setting-IIl that
was introduced in [18,39] for the evaluation on the robustness
against both poses and illuminations. This setting is more realistic
than the first two settings. Specifically, Setting-IIl adopts images in
session one for training and test, which has 249 identities. Images
from —45° to +45° (seven poses) under 20 illuminations (marked
as ID 00-19) are used. As listed in Table 3, previous studies used
all the images of first 100 identities for model training (PAML does
not use these external training data), and the images of the re-
maining 149 identities for test. In the test set, one frontal image
under the natural lighting ID 7 of each identity is selected in the
gallery. The remaining images from —45° to +45° except 0° are se-
lected as probes. All images that we selected were converted to
gray scale.

For the lighting synthesis of our E-GEM, we empirically select
frontal images of 12 identities from the first 100 identities (id 001,
002, 007, 008, 011, 012, 016, 019, 025, 026, 042, 047), under illu-
minations marked as ID 00-19 except 07, as the bootstrap set in
AQI. Such small size bootstrap set is sufficient to achieve reason-
able re-lighting results. E-GEM (with the depth parameter o = 1)
renders N = 19 images for each gallery subject at each quantized
pose. The quantized poses are sampled along the yaw with a range
of +50° at step of 5° . To characterize the detailed texture of the
synthesized images, the LBP feature (LBP;% histograms of the cells
of 3 x 3 pixels [47]) is extract to represent the images for PAML.

Our experiments compare the PAML method with three well-
known pose and illumination invariant methods. (1) Li et al
[18] represents a test face as a linear combination of training im-
ages, and utilizes the regularized linear regression coefficients as
features for face recognition. (2) RL+LDA [39] first reconstructs the
frontal-view face images using FIP features extracted from an im-
age under any pose and illumination, and then applies LDA to

4 Our affine-transformation based alignment method warps the face improperly
at the large pose angle, and thus we only render the synthetic images along the
yaw within +50°. When testing the recognition problem with larger angles, we
recommend to apply different face alignment method such as that in [45].

further enhance class separation. (3) CPF [19] is a recent work
which learns to rotate an arbitrary pose and illumination image
to a target-pose face image by multi-task deep neural network.

For PAML, we have tested three pose-aware classification
strategies: (1) Matching against true pose (assuming that true
pose is pre-known); (2) Matching by pose quantization strategy;
(3) Matching by pose quantization plus search range strategy.
Table. 4 and Table. 5 report results of Setting IIl. In table 4, the
recognition rates of a pose is averaged over all the possible illumi-
nations (marked as id 00-19, 07 excluded). Similarly, in table 5, the
recognition rate under one illumination condition is the averaged
result of all possible poses (—45° ~ +45°, 0° excluded). The overall
recognition rate of PS #2 is just 0.3% lower than that of PS #1, in-
dicating that our pose estimator is reliable and performance is af-
fected trivially when using the estimated pose instead of the true
pose. PS #1 achieves best performance under —15°, +15°, +30°.
As the pose angle becomes larger, PS #3 becomes the best, and
boosts the performance of PS #1 under 45° by an average margin
of 2.8%, showing that strategy of pose quantization plus search
range works well under large angles.

The PAML method with PS #3 achieves the overall accuracy of
91.1% across variable pose and illumination, which is more than
10% better than the state-of-the-art multi-task deep learning meth-
ods [19]. The significant higher accuracy of PAML clearly shows the
superiority of the pose-aware model for SSFR, although we use a
very simple metric learning model. CPF [19] and RL+LDA [39] at-
tempt to learn an unified deep neural network for pose-invariant
feature extraction, but our results show they may not be the pre-
mier solution, even with a representative training image ensemble
in this experiment. Although applied on the shallow LBP feature,
PAML effectively explores the discriminative information contained
among the gallery subjects, and thus shows the superior perfor-
mance to the deep learning methods.

It is worth mentioning that our method has not used any non-
frontal images from MPIE database to learn the cross-pose trans-
formation. PAML just needs a few frontal images under different il-
lumination conditions as bootstrap set for the quotient image (see
Table. 3 for comparison). Although the pose-aware information is
learnt from the synthesized images, PAML achieves better results
using much less training samples (20 illumination x 12 identities
= 240) than the other methods that require tens of thousands of
representative samples to learn the models.

6. Conclusion

In this paper, we address the pose variation problem for single-
sample face recognition by the Pose-Aware Metric Learning (PAML)
approach. Our primary idea is “from one to many”: Synthesizing
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many images of the pose and illumination variability from the sin-
gle gallery image, based on which metric learning approach can
reduce the “synthesized” variations at each quantified pose. Given
a single frontal image, two generic elastic model extensions are
proposed to synthesize facial images under varying shape and illu-
mination conditions at any pose. Pose-Aware Metrics are individ-
ually learnt by linear regression analysis at every quantized pose
for recognition. Extensive experiments on the Multi-PIE database
show that the PAML achieves 100% accuracy on the test setting
across poses. Moreover, PAML does not rely on any external data
for model training, while existing methods use a large generic im-
age ensemble to learn the pose invariance. On the test setting
across both poses and illuminations, PAML outperforms the recent
deep learning methods by over 10% accuracy.
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