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a b s t r a c t 

Pose and illumination variations are very challenging for face recognition with a single sample per person 

(SSPP). In this paper, we address this issue by a Pose-Aware Metric Learning (PAML) approach. Our pri- 

mary idea is “from one to many ”: Synthesizing many images of sufficient pose and illumination variability 

from the single training image, based on which metric learning approach is applied to reduce these “syn- 

thesized” variations at each quantified pose. For this purpose, given a single frontal training image, a 

multi-depth generic elastic model and an extended generic elastic model are developed to synthesize fa- 

cial images of the target pose with varying 3D shape (depth) and illumination variations respectively. To 

reduce these “synthesized” variability, Pose-Aware Metric spaces are separately learnt by linear regression 

analysis at each quantized pose, and pose-invariant recognition is performed in the corresponding metric 

space. By preserving the detailed texture and reducing the shape variability, the PAML method achieves 

an 100% accuracy on the Multi-PIE database under the test setting across poses, which is significantly 

better than the traditional methods that use a large generic image ensemble to learn the cross-pose 

transformations. On the more challenging setting across both poses and illuminations, PAML outperforms 

the recent deep learning approaches by over 10% accuracy. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

We consider the pose-invariant face recognition problem with

a single training sample per person. This single-sample face recog-

nition (SSFR) problem is one of the major challenges in many real-

world applications on law enforcement and homeland security [1] .

Theoretically, it is an extreme case of the small sample size prob-

lem that deteriorates conventional pattern recognition techniques.

As the supervised learning techniques are not applicable with-

out intraclass information, unsupervised techniques, which find the

low-dimensional embedding of the gallery data by ICA [2] , PCA

[3] or their variants [4–6] , have been widely applied. However,

these methods are suitable only for face representation and effec-

tive only for the recognition under constraint variations. Invariant

features (e.g. Gabor feature [7,8] and local binary patterns [9] ) are

effective to increase the robustness to the lighting and expression

changes. Unfortunately, since they discard all information about

the 3D layout of the face, these feature descriptors are deficient

to counteract the unobserved pose variations. 

Pose variation is widely regarded as a major challenge in the

automatic face recognition application. We envision the typical
∗ Corresponding author. 
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pplications where enrollment of subjects is through frontal im-

ges with neutral light and expression (i.e., typical enrollment

mages for most applications), but test images come from real-

orld unconstrained scenarios with various poses and illumina-

ions. Since the face images under variable pose reside in a highly

onlinear subspace, conventional subspace learning [8,10] , mani-

old learning [11] , sparse representation [12–14] and metric learn-

ng [15,16] methods designed for SSFR can not achieve satisfac-

ory performance. Previous SSFR approaches across pose differ-

nces mostly rely on a (external) generic training set with multiple

amples per person (MSPP) of similar viewpoints to the test sam-

les [17,18] . Recently, deep learning techniques are used to learn

he cross-pose transformation for the unconstrained face based on

n external multi-view image ensemble [19] . Unfortunately, the

erformance of these methods depends heavily on the represen-

ativeness of the generic training set, though they achieve state-of-

he-art performance on the Multi-PIE database [20] with the same

raining and testing viewpoints. In contrast, the 3D model based

ethods [21,22] is more flexible, since they do not rely on the sim-

larity of the training and testing viewpoints. 

In this paper, we aim to address the pose-invariant SSFR prob-

em by exploring the discriminative information in the gallery im-

ges, by the extensions of 3D generic elastic model [23,24] . In gen-

ral, our primary idea is “from one to many ”: Synthesizing many

https://doi.org/10.1016/j.patcog.2017.10.020
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Algorithm 1 Image synthesis via MD-GEM and E-GEM. 

Input: A frontal facial image, a 3D generic model with depth pa- 

rameter α, a bootstrap set of images with a unified shape, tar- 

get pose angles 

Output: The ensemble of synthesized images at target poses 

1: Locate the 77 feature points by off-the-shelf face alignment 

method or manual labeling. 

2: Compute dense correspondence between the input image and 

3D-GEM according to the delaunay triangulation of feature 

points, and then allocate the depth according to the parame- 

ter α. 

3: Transform the input face to the unified shape of the bootstrap 

set. Solve Q and light coefficient x j according to Eq. 4 , and then 

stimulate each illumination by setting lighting coefficient l j . Fi- 

nally, transform the re-rendered facial images back to the orig- 

inal shape. 

4: Map the texture from the re-rendered images with various il- 

luminations to the 3D-GEMs according to the dense correspon- 

dence obtained in Step 2. 

5: At each target pose, render the synthesized images with the 

3D-GEMs of input depth ( α) and lighting ( l j ) parameters. 

Algorithm 2 Pose-Aware Metric Learning. 

Input: The training set with a frontal training image per person, 

quantized pose angles 

Output: The transformation matrix W 

(p) for each quantized pose 

1: Synthesize a predefined number of images at all quantized 

poses for each frontal gallery image using Algorithm 1 . 

2: Align all the synthesized images by the predefined landmarks. 

Extract feature vectors of the aligned faces. 

3: At each quantized pose, compute the transformation matrix 

W 

(p) in Eq. 7 using the feature matrix of the synthesized im- 

ages at that pose. 
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mages of the pose and illumination variability from one single

frontal) gallery image, based on which the metric learning ap-

roach further reduces the “synthesized” variations at each quan-

ified pose. Following this idea, the contributions of paper are as

ollows. 

Firstly, we develop a multi-depth 3D generic elastic model (MD-

EM) with variable depth to characterize the uncertainty of the 3D

hape [25] , when rendering faces of different poses from a single

rontal image. To address this problem caused by the depth ambi-

uity of the face, we make a linear assumption on the depth chan-

el of 3D generic elastic model with a single parameter, instead of

 single settled depth map of the conventional GEM [24] . 

Secondly, we propose an extended generic elastic model (E-

EM) [26] that couples the 3D generic elastic model with the

uotient image [27] technique to synthesize faces under differ-

nt poses and illumination conditions from a single frontal im-

ges. Specifically, we develop a shape-free alignment for the quo-

ient image to achieve better face re-rendering results. This adap-

ive quotient image (AQI) is then used to generate the texture sur-

ace of GEM to render varying lightings. 

Thirdly, inspired by the “divide and conquer” strategy, we ad-

ress the pose-invariant face recognition problem by Pose-Aware

etric Learning (PAML) using the synthesized training images of

ach quantized pose separately. For each quantized pose, PAML

pplies linear regression analysis technique [16] to transform the

ynthesized training samples of one subject into a single point

f the metric space. In the recognition stage, we first estimates

he pose of probe face and then applies the corresponding pose-

pecific metric to perform classification. 

By the virtue of GEM, the proposed PAML method can take ad-

antage of the full texture details of the gallery image under ar-

itrary poses, which is essential for the highly accurate recogni-

ion. Extensive experiments on the Multi-PIE database [20] demon-

trates that our method is a superior SSFR solution for variable

ose, without using training set of external subjects to learn the

ose-invariant transformation. Specifically, on the test setting un-

er variable pose, the PAML method, based on the LBP descriptor

f the synthesized images via MD-GEM, achieves 100% accuracy on

he MPIE database. On the test setting across both poses and illu-

inations, PAML, based on the LBP descriptor of the synthesized

mages via E-GEM, outperforms the recent deep learning methods

y over 10% accuracy. Moreover, PAML does not rely on any ex-

ernal data for training, while existing methods use a large generic

mage ensemble of hundreds of people to learn the pose variations.

It should be noted that this paper is an extended work of our

revious conference papers [25,26] . In this paper, we present the

omprehensive related works, more technical details on MD-GEM

25] and E-GEM [26] , and a combined face synthesis algorithm

 Algorithm 1 ). Moreover, we also integrate them into the proposed

AML framework to obtain much better performance than our pre-

ious work. In particular, we demonstrate the 100% accuracy of

D-GEM on the additional pose-invariant recognition experiments

f MPIE database. 

. Background 

Many interesting improvements on face recognition have been

eported in the literature to handle pose variation. Robust feature

escriptors are expected to be more robust than pixel intensity to

ounteract the appearance change caused by poses. LGBP [28] is a

igh-dimensional face descriptor which first convolves the images

y a family of Gabor kernels followed by LBP coding of the filtered

mages. LE+LDA [29] method encodes the micro-structures of the

ace by a new learning-based encoding method, which can auto-

atically achieve very good tradeoff between discriminative power

nd invariance. CRBM+LDA [30] learns the local descriptor by local
onvolutional restricted Boltzmann machines, which exploits the

lobal structure and maintains the robustness to small misalign-

ents. 

Several statistical learning methods are proposed by leveraging

he correlation among features across poses. CCA [31] aims at pro-

ecting the images of different poses onto a common feature space

here the correlation between them are maximized. PLS method

32] attempts to project samples from two poses to a common la-

ent subspace, with one pose as regressor and the other pose as

esponse. GMA method [33] is a generalized multi-view analysis

ethod attempting to project the images of all poses to a discrim-

native common space, where pose variations are minimized. Li

t al. [18] represented a test face as a linear combination of train-

ng images and utilized the linear regression coefficients as fea-

ures for face recognition. 

3D model based methods provide straightforward solutions for

ose-invariant recognition. The 3D morphable model [34] is built

sing PCA on 3D facial shapes and textures acquired from a laser

canner. The learned 3D face model is reconstructed by fitting

he model to the input 2D image. Pose-invariant recognition can

e performed by transforming posed face images to the frontal

iew or comparing the reconstruction coefficients of PCA. How-

ver, the PCA subspace may not be accurate enough to character-

ze the detailed textures of test faces. Besides 3DMM, several 3D

odel based methods are proposed to rotate the non-frontal face

o the frontal one. Different from 3DMM, VAAM method [35] pro-

oses a fully automatic 3D pose normalization method, which can

ynthesize a frontal view by aligning an average 3D model to the

nput non-frontal face based on the view-based AAM. We recently
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improve this work by recovering the lighting condition of the oc-

cluded face part [21] . MDF method [18] generates a virtual image

at the pose of the gallery image for the probe image through the

Morphable Displacement Field, and then matches the synthesized

face with the gallery faces. StackFlow method [36] warps a non-

frontal face image to the fontal one progressively through one or

more correspondences between them at the patch level. 

Recently, deep learning approaches have achieved premier ac-

curacy on recognition by learning cross-pose transformation. DAE

method [37] learns pose-robust features by modeling the com-

plex non-linear transform from the non-frontal face images to

frontal ones through a single deep auto-encoder. Further, SPAE

method [38] proposes to learn the non-linear transformation from

the non-frontal faces to the frontal faces in a progressive way, in

which each stack learns the transformation across a small angle

in a supervised manner. The face identity-preserving (FIP) features

[39] are learned by a deep network that combines the feature ex-

traction layers and the reconstruction layers. The former layers en-

code a face image into the pose-invariant FIP features, while the

latter transforms them to an image in the canonical view. RL+LDA

method [39] further improves the performance by applying local

descriptors and LDA to the frontal reconstructed images. Recently,

a multi-view perceptron (MVP) is proposed to untangle the iden-

tity and pose by using random hidden neurons. CPF method [19] is

a recent work which can rotate the input face to a target-pose face

image with a multi-task deep neural network. 

In the past, it is believed that the true 3D shape must be

estimated faithfully by 3D Morphable model [34] for the pose-

invariant recognition task. Unfortunately, the reconstruction pro-

cess is unstable for the single image with natural lighting. 3D

generic elastic model (GEM) is introduced in [23,24] as a low

computational but efficient 3D modeling method. The underlying

assumption is that face depth information does not dramatically

change among individuals as long as the corresponding 2D face

feature points are aligned. Although this assumption seems strong,

experimental results show that coarse face shape is good enough

to achieve reasonable results. In this work, we improve the basic

GEM in order to address the SSFR problem across compound varia-

tions of poses and illuminations. An advantage of GEM is the capa-

bility to preserve original 2D texture in the synthesized images, so

that the local texture can be accurately discriminated. Pose-Aware

Metric Learning is developed to address the recognition problem

of each quantized pose separately, because a single linear subspace

cannot characterize the images under variable pose. 

3. GEM extensions with shape and illumination variability 

To address the problem on image synthesis from a single

frontal training face , this section describes two extensions of 3D

generic elastic model: (1) multi-depth GEM (MD-GEM) with shape

(depth) variations and (2) extended GEM (E-GEM) with illumina-

tion variations. MD-GEM improves the GEM model by transferring

a single depth map to variable ones with a “depth” parameter. E-

GEM combines the 3D generic elastic model (pose synthesis) and

the quotient image (lighting synthesis) [27] together to simultane-

ously address the lighting and pose synthesis . 

Due to the space limits, some related techniques, such as

dense correspondence and quotient image, may only be briefly

introduced, and the readers can refer to Prabhu and co-workers

[24,27,40] for the details of the background knowledge. 

3.1. Multi-depth GEM with a single control parameter [25] 

3D generic elastic model provides a practical method for gen-

erating the 3D model from a single frontal face according to a
eneric 3D facial depth map [24] . In this model, 2D ( u, v ) informa-

ion needs to be extracted and depth information can be recovered

y morphing a depth-map based on the 2D facial observations.

iven an input face and a generic 3D model, there are two stages

o recover the 3D model of the input face: dense correspondence

nd depth allocation [24] . The dense correspondence step finds out

he pixel-wise correspondence from the input 2D image to the 3D

eference model, and the depth allocation step simply allocates the

epth information from the reference model to the corresponding

ocation of 2D image. In the following, we describe the procedures

f each step. 

Dense correspondence : Firstly, sparse facial landmarks are de-

ected and each face ( I ) is partitioned into triangular polygons

 P ) by Delaunay Triangulation. Similarly, the generic depth-model

 ̄D ) is partitioned into a mesh ( M ) from the predefined landmark

oints. The corresponding points of input image and generic depth

ap are registered by means of the landmarks as illustrated in

ig. 1 . The point density increases simultaneously with loop subdi-

ision, which can be considered as a process of establishing dense

orrespondence between the input mesh and the depth model.

n our implementation, 77 fiducial facial landmarks of the in-

ut frontal face are automatically detected by SIFT feature based

TASM [41] . About 17500 dense vertices and 35000 triangles are

btained after 4 times of loop subdivisions. The procedures are

imilar to those used in [24,40] , which are illustrated in Fig. 1 . 

Depth Allocation : The prior depth-model function ( F ), sampled

t the spatial locations of mesh ( M ), is warped onto the input tri-

ngle mesh ( P ) by a piece-wise affine transformation for the pur-

ose of depth estimation. In this manner, each point in the input

mage has an exact corresponding point in the depth-model. Based

n this correspondence, we allocate the depth information for the

D shape of the input face. Finally, the texture information of the

nput image I ( P ( u, v )), sampled at the spatial locations of P ( u, v ),

s mapped onto the 3D shape. The variables for reconstructing 3D

ace model can be represented by: 

 = (u, v , z = F (M( ̃  u , ̃  v ))) (1)

 = I(P (u, v )) = (R u, v ,z , G u, v ,z , B u, v ,z ) (2)

here ( ̃  u , ̃  v ) in M is the registered points ( u, v ) in image P, S and

 are the shape and texture of the 3D model for the input face. 

Different from the GEM with a single depth-map in GEM [24] ,

e attempt to generate multiple realistic depth-maps of the hu-

an face for a single frontal image. The new model is called multi-

epth GEM (MD-GEM). Specifically, we assume that the depth map

f a specific face is a linearly stretched or flatten version of the av-

rage depth map of large populations . The multi-depth GEM offers

he depth information with the function F (M( ̃  u , ̃  v )) of the spatial

ocation ( ̃  u , ̃  v ) of the mesh M . Referring to the depth map in [24] ,

he depth-map function F (M( ̃  u , ̃  v )) is defined as a linear function

f a depth parameter α as follows. 

 (M( ̃  u , ̃  v )) = z re f + α( ̄D (M( ̃  u , ̃  v ))) − z re f ) (3)

here z ref is the depth value of a fixed reference point (We empir-

cally select the corner of the nose). 

Fig. 2 (a) shows six MD-GEMs with the varying depth param-

ter α that decides the depth of facial surface. The setting α =
 equals to the conventional GEM based on the average depth

ap [24] . The setting α > 1 or α < 1 generates linearly stretched

r flattened depth map of average face in z axis, respectively.

ig. 2 (b–d) show six different generic depth maps with α =
 1 . 1 , 1 . 0 , 0 . 9 , 0 . 8 , 0 . 7 , 0 . 6 } , and one can see from the figure that

atural face surfaces can be generated by controlling a single pa-

ameter α. Example rendered images of varying α-depth maps are

hown in Fig. 2 , which suggests that the plausible 3D structures of
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Fig. 1. The dense correspondence establishes the pixel-wise correspondence from the input 2D image to the 3D reference model. It is determined by the loop subdivision of 

the triangular polygons. Specifically, based on the detected shape (landmarks), both the face image and generic model are partitioned into a mesh of triangular polygons. After 

registering points between the input image and the generic depth-map, one can increase the point density simultaneously using Loop subdivision. Dense correspondence 

between the input mesh and the depth-model is established after 4 times of loop subdivisions. 

Fig. 2. We design an α depth function to generalize the generic elastic model to describe variable face surfaces. (a) Illustration of the α depth function that decides the 

depth of the generic depth-map. When α < 1, the generic depth-map becomes flatter. Otherwise, when α > 1, the generic depth-map becomes deeper. Given a single frontal 

image, it is difficult to infer the accurate 3D model for each face, but our α-depth function can derive several realistic 3D model with certain values of α. (b–d) show 

example images of three faces from the frontal view and the yaw angle of 45 °. (b) α = 1 . 0 is most realistic, (c) α = 0 . 8 is most realistic, (d) α = 0 . 6 is most realistic. 
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Table 1 

Comparative recognition rates under single-session testing of the Multi-PIE database. 

“� ” indicates the method needs to learn from the additional 100 subjects of the Multi- 

PIE; “ - ”, otherwise, indicates the method is database independent and may generalize 

well on complex environment. 

Methods −45 ◦ −30 ◦ −15 ◦ +15 ◦ +30 ◦ +45 ◦ Avg Train 

VAAM [35] 74.1 91.0 95.7 95.7 89.5 74.8 86.8 - 

MDF [18] 78.7 94.0 99.0 98.7 92.2 81.8 90.7 � 

PLS [32] 51.1 76.9 88.3 88.3 78.5 56.5 73.3 � 

CCA [31] 53.3 74.2 90.0 90.0 85.5 48.2 73.5 � 

GMA [33] 75.0 74.5 82.7 92.6 87.5 65.2 79.6 � 

DAE [37] 69.9 81.2 91.0 91.9 86.5 74.3 82.5 � 

SPAE [38] 84.9 92.6 96.3 95.7 94.3 84.4 91.4 � 

RR [18] 97.0 97.0 100 100 97.0 92.0 96.8 � 

RL + LDA [39] 97.8 98.6 100 100 98.6 98.4 98.4 � 

PAML (ours) 100 100 100 100 100 100 100 - 

Table 2 

Comparative recognition rates under multi-sessions testing of Multi-PIE database. “� ” in- 

dicates the method needs to learn from the additional 200 subjects of the MultiPIE; “ - ”, 

otherwise, indicates the method is database independent and may generalize well on com- 

plex environment. 

Methods −45 ◦ −30 ◦ −15 ◦ +15 ◦ +30 ◦ +45 ◦ Avg Train 

LGBP [28] 37.7 62.5 77 83 59.2 36.1 59.3 - 

VAAM [35] 74.1 91 95.7 95.7 89.5 74.8 86.9 - 

MDF [18] 93 98.7 99.7 99.7 98.3 93.6 97.2 � 

LE + LDA [29] 86.9 95.5 99.9 99.7 95.5 81.8 93.2 � 

CRBM + LDA [30] 80.3 90.5 94.9 96.4 88.3 75.2 87.6 � 

FIP + LDA [39] 93.4 95.6 100 98.5 96.4 89.8 95.6 � 

RL + LDA [39] 95.6 98.5 100 99.3 98.5 97.8 98.3 � 

MVP [46] 93.4 100 100 100 99.3 95.6 98.1 � 

PAML (ours) 98.3 99.3 100 100 100 98.3 99.3 - 
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real facial images can be characterized by the simple α-depth func-

tion. Each face has a certain α that is realistic to the corresponding

3D shape. Although one can not infer the proper α from a single

frontal image, we attempt to limit the variability by mapping the

synthetic images of varying α together into the feature space for

accurate recognition. 

3.2. Extended GEM with illumination variability [26] 

In order to synthesize the illumination changes over 3D generic

elastic model, we develop an Extended GEM (E-GEM) that overlays

the texture of the quotient images [27] on the surface of the 3D

generic model to characterize the compound variation of poses and

illuminations. Quotient Image method [27] is a classical technique

of face re-lighting. As a class of object, human face is considered

as Lambertian surface with a reflection function: ρ( u, v ) n ( u, v ) T s ,

where 0 ≤ρ( u, v ) ≤ 1 is the surface reflectance (gray-level) associ-

ated with point u, v in the image, n ( u, v ) is the normal direction

of the surface associated with point u, v in the image, and s is the

light source direction (point light source) and whose magnitude is

the light source intensity. In [27] , the assumption on Ideal Class of

Object , i.e., objects that have the same shape but differ in surface

albedo, is defined. Under this assumption, the Quotient Image Q y ( u,

v ) of face y against face a is defined: Q y (u, v ) = 

ρy (u, v ) 
ρa (u, v ) , where u, v

range over the image. Thus, Q y depends only on the relative sur-

face texture information and is independent of illumination. 

The derivation of quotient image is based on a bootstrap set

(reference set) consisting of L ( L is small) faces under M unknown

independent illumination (totally M × L images). Given this boos-

trap set, the quotient image Q y of an input image Y ( u, v ) can be

computed as 
 y (u, v ) = 

Y (u, v ) ∑ M 

j=1 Ā j (u, v ) c j 
, (4)

here Ā j (u, v ) is the average image under illumination j of the

ootstrap set and c j can be derived from the bootstrap set images

nd the input image Y ( u, v ). See [27] for more details of deriving c j .

ccording to the quotient image Q y computed by Eq. (4) , the image

pace created by the input face, under all possible illuminations, is

panned by 

 s = Q y �

( ∑ 

j 

Ā j l j 

) 

(5)

here � denotes the Cartesian product(pixel by pixel multiplica-

ion). In our experiments, we utilize the “one-hot” coefficient l j = 1

or j = 1 , . . . , M to simulate each illumination on the input face re-

pectively. 

The basic assumption of quotient image is that all involved

bjects share the same shape. Although human faces share sim-

lar global shape, they still have non-negligible local individual

hape variations. The commonly used face alignment process in

27] (global affine transformation) can not well satisfy the defi-

ition of Ideal Class of Object . The assumption on the ideal class

ould be better satisfied if we perform piecewise correspondence

etween images (say frontal images) of the class. The piecewise

orrespondence of triangulations compensates for the shape varia-

ion and leaves only the texture variation. In our implementation,

e first warp all images into a generic shape by piecewise affine

ransformations, shown in Fig. 3 , and then apply the quotient im-

ge technique to the shape-free images. After quotient image is de-

ived and the re-lighting images are rendered, we warp the relight-

ng images back to the original shape. Example re-rendered results

re demonstrated in Fig. 4 . Since this procedure makes the shapes

f the images adapted to the basic assumption of the quotient im-

ge, we called it adaptive quotient image (AQI). 
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Fig. 3. The procedure to generate the “shape-free” image, which transforms the image by the piecewise affine warp according to the delaunary triangulation. All images 

after this procedure are assumed to have the same shape. The proposed adaptive quotient image technique maps all images to the “shape-free” image before the derivation 

of the quotient image. 

Fig. 4. Visual illustration of overall pipeline of Extended GEM based image rendering with adaptive quotient image. The 3D Models generated by GEM are rendered at yaw 

0 ◦, −30 ◦, +30 ◦ from top to bottom. 
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Based on the same assumption of the generic face shape, GEM

nd AQI are two complementary models that characterize the pose

nd illumination variations of human face respectively. Using the

ame delaunary triangulation based on the same landmarks, it is

atural to perform the dense correspondence between the AQI and

he 3D generic model. With such a dense correspondence, the tex-

ure of AQI can naturally be mapped to 3D surface of GEM to char-

cterize the variable illumination. The pipeline of image augmen-

ation of Extended GEM is summarized in Fig. 4 . With Adaptive

uotient Image, we first virtually re-render the input image un-

er variable lighting, and then construct corresponding 3D models

rom the re-lighting images by 3D GEM. These 3D models are ren-

ered at different views to synthesize images under various pose
nd illumination conditions. In this manner, with a single 3D shape

rior, we make pose and illumination augmentation with only one

allery sample, given a small bootstrap set of images. Synthesized

mages of one subject under 7 target poses and 20 illuminations

re shown in Fig. 5 . The detailed procedures are summarized in

lgorithm 1 . 

. Face recognition via Pose-Aware Metric Learning 

Given a single frontal gallery image, the extended generic

lastic model synthesizes facial images under varying 3D shape

depth) and illumination variations at the target pose. To reduce

he shape and illumination variability, Pose-Aware Metrics are indi-
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Fig. 5. E-GEM based synthesized images of a single individual to simulate the illumination and pose conditions in the Multiple-PIE database. The synthesized images have 

been divided into seven pose subsets with 20 light source directions. Every pair of columns shows the images from a particular pose ( −45 through 45 ° from left to right). 

Note that all the images were generated from the a single frontal image using our Extended GEM with the depth parameter α = 1 . 
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vidually learnt by linear regression analysis [16] of every quantized

pose. Pose-invariant recognition is performed by the metric space

at the corresponding pose. This section introduces the recognition

pipeline and the linear regression analysis [16] technique used in

PAML. 

4.1. Pose estimation and alignment 

Given a testing (non-frontal) face, five facial fiducial landmarks

are automatically located by using face alignment algorithms 1 such

as SDM [42,43] , including the centers of two eyes, the tip of the

nose, two corners of the mouth. A linear regression framework,

enlightened by the face 3D alignment process in [44] , is employed

to conduct pose estimation based on the five landmarks. Although

this method provides a weak pose estimation, experimental results

shows that it is sufficient to assure reasonable recognition accu-

racy. 

Each 3D model in the database is rendered at the estimated

pose and 2D images are synthesized after 2D projection. The vir-

tually rendered images and probe image are aligned by an affine
1 In the experiment, we have manually labeled the feature points on the failure 

cases of face alignment. 

t

w

ransformation, in order to compensate for scaling and in-plane

otation, using two eyes and the midpoint of two mouth corners.

pecifically, all faces are aligned to 65 × 75 pixels with eyes po-

ition of (15, 20) and (50, 20) and the midpoint of mouth cor-

ers position of (32.5, 60). Example aligned images are show in

ig. 6 (a). 

.2. Recognition via Pose-Specific Metric 

The 3D continuous pose space can be divided into a limited

umber of quantized poses according to the requirement of the ap-

lication. For example, our experiments render the synthetic faces

long the yaw with a range of ± 50 ° 2 at steps of 5 ° (see Fig. 6 (a)).

t each quantized pose, we render the 3D models with virtually

arying shape and illumination of each gallery subject as the train-

ng set. The basic assumption of PAML is that, at each pose angle,

he synthesized images of a subject with varying shapes and il-

uminations span a low dimensional subspace. Based on this as-

umption, PAML learns a transformation matrix W 

( p ) by which the
2 In the experiment, we apply the affine transformation (determined by centers 

of two eyes and mouth) to align the face images. The alignment is applicable to 

he face under relatively small pose angles. If the pose angle is large, the similarity 

arp designed in [45] can be used. 
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Fig. 6. (a)Aligned faces of quantized poses (yaw −50 ◦ to +50 ◦ in step of 5 °) (b)The geometric interpretation of a Pose-Aware Metric space at the yaw 45 ° pose. Three classes 

of rendered images under the same pose, but with varying 3D depths ( α = { 0 . 9 , 1 . 0 , 1 . 1 } ) and lightings, are mapped to [1; 0; 0] T , [0; 1; 0] T , [0; 0; 1] T respectively. 

Fig. 7. Example aligned facial images used in our experiments. (a) The images of 

three subjects in the MultiPIE single-session testing. (b) The images of one subjects 

in MultiPIE multiple-sessions testing, which display significant appearance change 

by time interval. 

i  

t  

t  

m  

p  

t  

s  

n  

(

 

h  

f  

n  

s  

l  

Table 3 

Comparison of training images. 

Methods Training images 

Li [18] 7cm100 Identities × 7 Poses × 20 Illuminations, Totally 

140 0 0 Images 

RL [48] + LDA 

CPF [19] 

PAML 12 Identities × 1 Frontal Pose × 20 Illuminations, Totally 

240 Images 
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i  
llumination subspace of each subject (at each pose) is mapped

o the metric space where the images of each subject locate at

he corresponding class indicator vector. Fig. 6 (b) illustrates a geo-

etric interpretation of this mapping at the yaw pose of 45 °. The

urpose of this mapping is to eliminate the illumination uncer-

ainty under a pose by mapping the illumination subspace to a

ingle point. Moreover, this mapping could enhance the discrimi-

ation among similar faces by mapping them to equidistant targets

 Fig. 7 ). 

Linear regression analysis (LRA) is a parameter-free method that

as achieved state-of-the-art performance on the SSFR for frontal

ace images [16] . In the PAML framework, we extend this tech-

ique to solve the metric learning problem at each quantized pose

eparately. Specifically, For the recognition of K subjects, count-

ess equidistant embeddings are feasible by shifting and rotat-
ng a K − 1 regular simplex. For the efficiency purpose, the class

ndicator vector y i ∈ R 

K is applied to represent the i th subject,

here y i = [0 , · · · , 1 , · · · , 0] T has a single 1, i.e. its i th component.

his setting of equidistant embedding avoids the time-consuming

earest-neighbor search for recognition, since the nearest proto-

ype can be efficiently found by the maximum element of the vec-

or. 

At each quantized pose, let X k ∈ R 

l×N , k = 1 , . . . , K denote the

tacked feature vectors of the N synthesized images (Under vari-

ble depth and illumination) for the subject k . Using class in-

icator targets y i as multivariate outputs of the gallery samples

 = [ X 1 , · · · , X K ] ∈ R 

l×(NK) , we can formulate the linear regression

odel in matrix notation 

 = W X + E (6)

here T is a K × NK target matrix whose columns are the one-

ot class indicator vectors, W is a K × l mapping matrix and E =
 e 1 , e 2 , · · · , e NK ] is a K × NK matrix of errors. In order to minimize

he mean square error, i.e. Tr{ E T E }, the optimal transformation ma-

rix can be readily computed as follows. 

 = T X 

† (7) 

here X † denotes the generalized inverse of X . For each quantized

ose indexed by superscript p , the optimal transformation matrix

 

(p) ∈ R 

K×l is derived in the identical manner. 

When a novel test image near the quantized pose p is presented

o the LRA based classifier, the feature vector of the image, denoted

y x , is first extracted and then normalized to zero mean and unit

ength. The response vector r ∈ R 

K is derived by a linear transfor-

ation: r = W 

(p) x . Finally, the recognition result is determined by

he largest component of the response vector: 

 = arg max 
i =1 , ... ,K 

r (i ) (8) 

here r ( i ) denotes the i th element of the response vector r . 

For automatic recognition, we estimate the pose of the probe

mage using head pose estimator, find the nearest quantized pose
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Table 4 

Average Recognition Rate (Percent) on Different Poses under Setting-III . The 

Best Performance Are in Bold . Pose Strategy is as PS for simplification. 

Methods −45 ◦ −30 ◦ −15 ◦ +15 ◦ +30 ◦ +45 ◦ Avg. 

Li [18] 63.5 69.3 79.7 75.6 71.6 54.6 69.3 

RL [39] + LDA 67.1 74.6 86.1 83.3 75.3 61.8 74.7 

CPF [19] 73.0 81.7 89.4 89.5 80.4 70.3 80.7 

PAML (PS � 1) 76.5 88.3 98.5 99.2 95.4 84.3 90.4 

PAML (PS � 2) 76.3 89.5 97.0 98.3 94.1 85.1 90.1 

PAML (PS � 3) 79.0 90.3 97.0 98.3 94.7 87.4 91.1 
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3 We would like to thank the reviewer for pointing out this unfair factor. The 

method in [35] clearly claimed that their pipeline was fully automatic. However, 

other methods have not clearly stated whether manual corrections are involved or 

not during the face detection and alignment. 
p , and recognize the image using the corresponding Pose-Aware

Metric (called pose quantization strategy ). The recognition can

be readily conducted by the linear regression: r = W 

(p) x . Also, an-

other strategy called pose quantization plus search range can

be defined as using the corresponding Pose-Aware Metrics of the

two nearest quantized poses to determine the recognition result.

For our LRA method, the fusion is naturally conducted by simply

adding up the output scores of each gallery identity. Given a weak

pose estimator, this strategy is expected to compensate for the in-

correct estimation and obtain more accurate recognition rate. 

5. Experiments and results 

In this section, we evaluate the effectiveness of the proposed

PAML method on the Multi-PIE face database [20] . The Multi-PIE

face database contains 754,204 images of 337 identities, where

each identity has images captured under 15 poses and 20 illumi-

nations in four sessions during different periods. 

5.1. Recognition across poses by MD-GEM 

We evaluate pose-invariant face recognition using two com-

monly used settings as follows. 

• Single-session Setting adopts images of different poses and neu-

tral illumination marked as ID 07. Only the images in session

one are used, which only has 249 identities. The images of the

first 100 identities are for model training (PAML does not use

these external training data), and the images of the remain-

ing 149 identities for test. In the test stage, one frontal image

of each identity in the test set is selected in the gallery. The

remaining images from −45 ◦ ∼ +45 ◦ except 0 ° are selected as

probes. 
• Multi-sessions Setting adopts images of different poses and neu-

tral illumination marked as ID 07. It evaluates the robustness to

pose variations. For Setting-I, the images of the first 200 identi-

ties in all the four sessions are chosen for training (PAML does

not use these external training data), and the images of the re-

maining 137 identities for test. During test, one frontal image

(i.e. 0 °) of each identity in the test set is selected to the gallery,

so there are 137 gallery images in total. The remaining images

from −45 ◦ ∼ +45 ◦ except 0 ° are selected as probes. 

These two settings have been widely used to evaluate pose-

invariant face recognition, and our experiments compare our

PAML method to a few existing methods, including VAAM [35] ,

MDF [18] StackFlow [36] , CCA [31] , PLS [32] , GMA [33] , LGBP

[28] , LE+LDA [29] , CRBM+LDA [30] , RR [18] , DAE [37] , SPAE

[38] , FIP+LDA [39] , RL+LDA [39] , and MVP [46] . For PAML, the

MD-GEM renders N = 6 images with the depth parameter α =
{ 1 . 1 , 1 . 0 , 0 . 9 , 0 . 8 , 0 . 7 , 0 . 6 } for each gallery subject at each of the

6 test poses. The first experiment involves only the facial images

of session 1 in which the gallery and probe images are collected

at the same time under identical lighting condition. The purpose

is to evaluate the accuracy of the 3D PAML model for off-pose 2D
atching, assuming the pose-angle of the face image is given in

he recognition stage. All images that we selected are converted to

ray scale. To characterize the detailed texture of the synthesized

mages, the LBP feature ( LBP u 2 
8 , 1 

histograms of the cells of 3 × 3 pix-

ls [47] ) is extract to represent the images for PAML. 

Table 1 enumerates the comparative accuracy of 10 methods on

he experiment of setting-I. Statistical subspace learning methods,

uch as PLS, CCA, GMA, perform the worst since they only lin-

arly learn the association among the images of different poses.

onsidering that this test has not introduced any real-world fac-

ors (lighting and time changes), the accuracy lower than 80% in-

icates the subspace analysis of 2D images may be not a suitable

echnique to address pose-invariant recognition problem. By ex-

loiting 3D information learned from the 100 subjects of the same

atabase, VAAM and MDF improve the accuracy to about 90%. This

emonstrates the usefulness of 3D model but it may not be sat-

sfactory, especially considering the Single-session setting of this

xperiment. Basic deep learning method such as DAE reports a

easonable accuracy of 83%, while recent advanced deep learning

ethods, such as SPAE, RL+LDA, boost the accuracy to 91% and

8%, respectively. These results seem promising, but one should be

ware of the same pose angles of the 200-subject training set and

he test set. This concern becomes evident when a simple ridge re-

ression method based on the same training data can achieve 97%

ccuracy. 

The proposed MD-GEM based PAML method achieves perfect

100%) accuracy on all tested pose sets, which clearly validates the

uperiority of PAML over other 3D models for off-pose 2D match-

ng. More importantly, different from other methods based on ho-

ologous training data, PAML could generalize equivalently to any

arget pose, since it does not rely on external training data outside

he gallery. The perfect accuracy comes mainly from the 3D struc-

ure of MD-GEM, rather than the implicit correlation between the

raining and the test set. 

The second experiment involves the images of all the four ses-

ions of the Multi-PIE database. The purpose is to evaluate the ac-

uracy of the 3D PAML model for off-pose 2D matching, as well as

he robustness against other real-world factors, such as appearance

hanges caused by mustache and glasses. Table 2 enumerates the

omparative accuracy of 9 methods on the experiment of setting-II.

GBP is a highly discriminative descriptor for frontal face match-

ng, but reports the lowest accuracy of 59%. By applying feature

earning techniques to the 200-subject training set, LE+LDA and

RBM+LDA methods boost the accuracy to 93% and 88% respec-

ively. However, these training models may not generalize well to

ther test poses or data sets. Similar to the first experiment, tradi-

ional 3D based methods, such as MDF, achieve very high accuracy

97%) but are surpassed by recently proposed deep learning based

ethods, such RL+LDA and MVP. 

Though previously reported accuracies on this setting are al-

eady very high, our PAML method can further reduce the recogni-

ion errors by over a half (from 1.9% to 0.7%). At the most challeng-

ng pose (45 °), it outperforms the other methods by a margin of

% accuracy. Note that all the other methods have utilized a 200-

ubject training set to adapt the model to test poses, while PAML

rains the class model only on the single gallery image per class. 

It should be noted that the comparison among these techniques

ay be unfair, because their involved face alignment procedures

re not identical. 3 Indeed, while some competitors such as [35] are

ully automatic approaches, our results are semi-automatic because

e have manually adjusted the feature points in case of the failure
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Table 5 

Average recognition rate (percent) on different illuminations conditions under Setting-III . The best 

performance are in Bold . Pose Strategy is as PS for simplification. 

Methods 00 01 02 03 04 05 06 08 09 10 

Li [18] 51.5 49.2 55.7 62.7 79.5 88.3 97.5 97.7 91.0 79.0 

RL + LDA [39] 72.8 75.8 75.8 75.7 75.7 75.7 75.7 75.7 75.7 75.7 

CPF [19] 59.7 70.6 76.3 79.1 85.1 89.4 91.3 92.3 90.6 86.5 

PAML (PS � 1) 85.7 78.0 82.3 87.8 92.5 96.0 98.7 99.0 97.4 95.1 

PAML (PS � 2) 85.8 75.1 81.3 87.1 93.0 96.7 99.1 99.0 98.0 95.0 

PAML (PS � 3) 87.4 76.4 82.7 87.7 94.7 97.1 99.4 99.6 98.0 95.5 

11 12 13 14 15 16 17 18 19 Avg. 

Li [18] 64.8 54.3 47.7 67.3 67.7 75.5 69.5 67.3 50.8 69.3 

RL + LDA [39] 75.7 75.7 75.7 73.4 73.4 73.4 73.4 72.9 72.9 74.7 

CPF [19] 81.2 77.5 72.8 82.3 84.2 86.5 85.9 82.9 59.2 80.7 

PAML (PS � 1) 89.0 83.0 75.7 93.3 94.7 95.6 95.3 92.7 85.2 90.4 

PAML (PS � 2) 88.6 81.3 76.5 92.0 94.7 95.2 94.7 93.0 85.1 90.1 

PAML (PS � 3) 89.8 84.1 77.7 92.7 95.3 96.9 95.9 94.9 85.8 91.1 
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f detection. In this experiment, there are only about 1% of failure

ases when using our extended SDM method [43] for face align-

ent, and the accuracy drop from 100% to 98.7% (single-session

etting) and from 99.3% to 97.6% (multi-sessions setting) if a fully

utomated pipeline is applied. As expected, our accuracy is much

igher than another fully automatic method [35] . Moreover, one

an expect the accuracy loss would gradually decrease with the

evelopment of the face alignment algorithms in the future. 

.2. Recognition across pose and illumination by E-GEM 

The third experiment is conducted under the Setting-III that

as introduced in [18,39] for the evaluation on the robustness

gainst both poses and illuminations. This setting is more realistic

han the first two settings. Specifically, Setting-III adopts images in

ession one for training and test, which has 249 identities. Images

rom −45 ◦ to +45 ◦ (seven poses) under 20 illuminations (marked

s ID 00-19) are used. As listed in Table 3 , previous studies used

ll the images of first 100 identities for model training (PAML does

ot use these external training data), and the images of the re-

aining 149 identities for test. In the test set, one frontal image

nder the natural lighting ID 7 of each identity is selected in the

allery. The remaining images from −45 ◦ to +45 ◦ except 0 ° are se-

ected as probes. All images that we selected were converted to

ray scale. 

For the lighting synthesis of our E-GEM, we empirically select

rontal images of 12 identities from the first 10 0 identities (id 0 01,

 02, 0 07, 0 08, 011, 012, 016, 019, 025, 026, 042, 047), under illu-

inations marked as ID 00-19 except 07, as the bootstrap set in

QI. Such small size bootstrap set is sufficient to achieve reason-

ble re-lighting results. E-GEM (with the depth parameter α = 1 )

enders N = 19 images for each gallery subject at each quantized

ose. The quantized poses are sampled along the yaw with a range

f ± 50 ° at step of 5 ° . 4 To characterize the detailed texture of the

ynthesized images, the LBP feature ( LBP u 2 
8 , 1 

histograms of the cells

f 3 × 3 pixels [47] ) is extract to represent the images for PAML. 

Our experiments compare the PAML method with three well-

nown pose and illumination invariant methods. (1) Li et al.

18] represents a test face as a linear combination of training im-

ges, and utilizes the regularized linear regression coefficients as

eatures for face recognition. (2) RL+LDA [39] first reconstructs the

rontal-view face images using FIP features extracted from an im-

ge under any pose and illumination, and then applies LDA to
4 Our affine-transformation based alignment method warps the face improperly 

t the large pose angle, and thus we only render the synthetic images along the 

aw within ± 50 °. When testing the recognition problem with larger angles, we 

ecommend to apply different face alignment method such as that in [45] . 

6

 

s  

a  
urther enhance class separation. (3) CPF [19] is a recent work

hich learns to rotate an arbitrary pose and illumination image

o a target-pose face image by multi-task deep neural network. 

For PAML, we have tested three pose-aware classification

trategies: (1) Matching against true pose (assuming that true

ose is pre-known); (2) Matching by pose quantization strategy;

3) Matching by pose quantization plus search range strategy.

able. 4 and Table. 5 report results of Setting III . In table 4 , the

ecognition rates of a pose is averaged over all the possible illumi-

ations (marked as id 00-19, 07 excluded). Similarly, in table 5 , the

ecognition rate under one illumination condition is the averaged

esult of all possible poses ( −45 ◦ ∼ +45 ◦, 0 ° excluded). The overall

ecognition rate of PS � 2 is just 0.3% lower than that of PS � 1, in-

icating that our pose estimator is reliable and performance is af-

ected trivially when using the estimated pose instead of the true

ose. PS � 1 achieves best performance under −15 ◦, +15 ◦, +30 ◦.

s the pose angle becomes larger, PS � 3 becomes the best, and

oosts the performance of PS � 1 under 45 ° by an average margin

f 2.8%, showing that strategy of pose quantization plus search

ange works well under large angles. 

The PAML method with PS � 3 achieves the overall accuracy of

1.1% across variable pose and illumination, which is more than

0% better than the state-of-the-art multi-task deep learning meth-

ds [19] . The significant higher accuracy of PAML clearly shows the

uperiority of the pose-aware model for SSFR, although we use a

ery simple metric learning model. CPF [19] and RL+LDA [39] at-

empt to learn an unified deep neural network for pose-invariant

eature extraction, but our results show they may not be the pre-

ier solution, even with a representative training image ensemble

n this experiment. Although applied on the shallow LBP feature,

AML effectively explores the discriminative information contained

mong the gallery subjects, and thus shows the superior perfor-

ance to the deep learning methods. 

It is worth mentioning that our method has not used any non-

rontal images from MPIE database to learn the cross-pose trans-

ormation. PAML just needs a few frontal images under different il-

umination conditions as bootstrap set for the quotient image (see

able. 3 for comparison). Although the pose-aware information is

earnt from the synthesized images, PAML achieves better results

sing much less training samples (20 illumination × 12 identities

 240 ) than the other methods that require tens of thousands of

epresentative samples to learn the models. 

. Conclusion 

In this paper, we address the pose variation problem for single-

ample face recognition by the Pose-Aware Metric Learning (PAML)

pproach. Our primary idea is “from one to many ”: Synthesizing
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many images of the pose and illumination variability from the sin-

gle gallery image, based on which metric learning approach can

reduce the “synthesized” variations at each quantified pose. Given

a single frontal image, two generic elastic model extensions are

proposed to synthesize facial images under varying shape and illu-

mination conditions at any pose. Pose-Aware Metrics are individ-

ually learnt by linear regression analysis at every quantized pose

for recognition. Extensive experiments on the Multi-PIE database

show that the PAML achieves 100% accuracy on the test setting

across poses. Moreover, PAML does not rely on any external data

for model training, while existing methods use a large generic im-

age ensemble to learn the pose invariance. On the test setting

across both poses and illuminations, PAML outperforms the recent

deep learning methods by over 10% accuracy. 
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