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Abstract

We extend the classical linear discriminant analysis (L-
DA) technique to linear ranking analysis (LRA), by con-
sidering the ranking order of classes centroids on the pro-
jected subspace. Under the constrain on the ranking order
of the classes, two criteria are proposed: 1) minimization
of the classification error with the assumption that each
class is homogenous Guassian distributed; 2) maximiza-
tion of the sum (average) of the k minimum distances of
all neighboring-class (centroid) pairs. Both criteria can
be efficiently solved by the convex optimization for one-
dimensional subspace. Greedy algorithm is applied to ex-
tend the results to the multi-dimensional subspace. Experi-
mental results show that 1) LRA with both criteria achieve
state-of-the-art performance on the tasks of ranking learn-
ing and zero-shot learning; and 2) the maximum margin cri-
terion provides a discriminative subspace selection method,
which can significantly remedy the class separation prob-
lem in comparing with several representative extensions of
LDA.

1. Introduction
Dimension reduction helps pattern classification by se-

lecting a low-dimensional subspace that preserves the class
separability. Moreover, it provides a low-dimensional, usu-
ally 1D or 2D, graphical representations that are useful for
preliminary analyses and data visualization in various ar-
eas. For example, in genomics, one would like to find the
single combinations of gene mutations that cause a set of
subclasses of a disease. In psychology, one usually want
to visualize a group of samples belonging to multi-classes
in a 2D plot from which conclusions can be drawn. Fish-
er’s linear discriminant analysis (LDA) [7][17] is one of the
most important method for dimension reduction. It select-
s the (C − 1)-dimensional, wherein C is the class number,
subspace by simultaneously maximizing the between-class
scatter and minimizing the within-class scatter. However,
LDA has two apparent limitations as follows.

Figure 1. There are three classes (named 1, 2, and 3) of samples,
which are drawn from a Gaussian distribution in each class. L-
DA finds a projection direction that maximize the between-class
scatter, while merges class 1 and class 2. The proposed LRA aim-
s to minimize the classification error (or maximize neighboring-
class margin) while preserving the ranking order “Class 1≻Class
2≻Class 3”

• When the dimension is less than C−1, LDA is subopti-
mal and could merge the close classes. This is defined
as the class separation problem [20] in the literature.

• LDA does not model the relative strength of the high-
level semantic attributes, which is effective to enhance
object recognition and zero-shot learning [16].

To address these two limitations, we extend the classi-
cal LDA technique to linear ranking analysis (LRA), by
considering the ranking order of classes centroids on the
projected subspace. Under the constrain on the ranking
order of the classes, two criteria are proposed: 1) mini-
mization of the classification error with the assumption that
each class is homogenous Guassian distributed; 2) maxi-
mization of the sum (average) of the k minimum distances
of all neighboring-class (centroid) pairs. Both criteria can
be efficiently solved by the convex optimization for one-
dimensional subspace. Greedy algorithm is applied to ex-
tend the results to the multi-dimensional subspace.
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Experimental results on synthetic data set, Outdoor
Scene Recognition, and Public Figure Face Database show
that LRA with both criteria achieves state-of-the-art perfor-
mance on the tasks of ranking learning and zero-shot learn-
ing. The results on two UCI machine learning repository
and USPS handwriting digits show that the maximum mar-
gin criterion is a potential discriminative subspace selec-
tion method, which significantly reduces the class separa-
tion problem in comparing with several representative ex-
tensions of LDA.

2. Related Works
2.1. Linear Discriminant Analysis and Extensions

The aim of LDA is to find a low dimensional subspace
in which the ratio between the within-class scatter and
between-class scatter is minimized. Assuming there are C
classes to be analyzed, the subspace is spanned by a set of
vectors, wi, 1 ≤ i ≤ C − 1, which forms the columns of
the matrix W = [w1, . . . , wC−1]. The ith class contains
ni training samples xij , 1 ≤ j ≤ ni, and has a centroid
of µi =

1
ni

∑ni

j=1 xij . The between-class scatter matrix Sb

and the within-class scatter matrix Sw are defined by

Sw =
1

n

C∑
i=1

ni(µi − µ)(µi − µ)T (1)

Sb =
1

n

C∑
i=1

ni∑
j=1

ni(xij − µi)(xij − µi)
T (2)

where n =
∑C

i=1 ni is the sample size of training set and
µ = 1

n

∑C
i=1

∑ni

j=1 xij is the global centroid of the training
set. The optimal projection matrix W of LDA is computed
from the eigenvectors of S−1

w Sb, under the assumption that
Sw is invertible or the eigenvectors of (Sw+σI)−1Sb, when
Sw is singular.

Several algorithms [13][14][20][1], which emphasizes
the close class pairs by adaptively weighting between-class
components, have been proposed to address the class sepa-
ration problem. However, they cannot guarantee the separa-
tion of all class pairs, and thus the far apart class pairs may
always have influence on the close class pairs. To address
this limitation, Bayes optimal LDA (BLDA) does not as-
sign weights to class pairs, but directly minimizes the clas-
sification error in the one-dimensional projected space [9].
The minimum error criterion of our work learns the ranking
function by a similar optimization procedure to [9], but we
have extended it to the applications of the ranking learning
and zero-shot learning, rather than only for the classifica-
tion purpose. Moreover, we propose a maximum margin
formulation which is shown to outperform BLDA on the
classification of real-world data.

The maximization of the minimum distance between the
neighboring class centroids has been explored by Bian and
Tao [2]. Our proposed max-k-min criterion is more general
and arguably more robust. The max-min distance analy-
sis in [2] focuses on the closest class pair and ignore the
global extension. In contrast, our max-k-min criterion con-
siders the global extension of the k closest class pairs, and
would be more adaptive to the various class distributions
by properly selecting k. Second, the objective function of
our criterion is convex and can be solved efficiently by lin-
ear programming, but that of [2] is not convex and can on-
ly be solved approximately and costly by the semidefinite-
programming.

2.2. Binary and Relative Attributes

Most existing works treat attributes as binary predictors
indicating the presence or absence of a certain property of
an sample. Learning attribute categories have been used to
predict texture or color types [6], and provide a middle-cue
for object or face recognition. Moreover, the high-level se-
mantics of attributes also enable zero-shot transfer [12][18],
or description and localization [5][21]. This may be suffi-
cient for the binary properties, such as ‘is Asian’ and ‘wear-
ing eyeglasses’. These methods model the attributes as bi-
nary, but a large number of attributes are not binary, and
described naturally in a relative way.

The pioneering work of Parikh and Grauman [16]
learned a ranking function on images based on constrains
specifying the relative strength of attributes. Given a set
of training samples represented by xi ∈ Rn. For each
attribute, we are given a set of ordered pairs of samples
O = {(i, j)} and a set of unordered pairs S = {(i, j)}
such that (i, j) ∈ O ⇒ i ≻ j, i.e. sample i has a stronger
attribute than j, and (i, j) ∈ S ⇒ i ∼ j, i.e. the attribute of
sample i is similar to that of sample j. The goal is learning
a ranking function

r(xi) = wTxi (3)

in order to satisfy the maximum number of following con-
strains ∀(i, j) ∈ O : wTxi > wTxj and ∀(i, j) ∈ S :
wTxi = wTxj . The problem can be approximated solved
by the modified ranking SVM formulation. Our work also
learns the ranking function based on relative strength of at-
tributes, but treat the class as a whole rather than treating the
samples individually. Thus, unlike the learning-to-rank for-
mulation, we can impose the distributional assumption and
perform marginal analysis to the classes , which we show
achieve state-of-the-art performance on the applications of
zero-shot learning and dimension reduction.

3. Linear Ranking Analysis
Linear ranking analysis aims to learn the ranking func-

tion on the C classes of interest with predefined ordering.
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This technique is then extended to solve the zero-shot learn-
ing and dimension reduction problems.

3.1. Minimum Error Criterion

Theorem 1 ([9]). Define a constrained region A where all
vectors w sampled from it generate the same ordered se-
quence η(i) of the projected centroid locations ηi = wTµi

of C classes. Then, the region A is a convex polyhedron.

Without loss of generality, we apply the within-class
whitening preprocessing in the input feature space, and as-
sume the conditional distribution is homoscedastic Gaus-
sian, i.e. Ni(µi,Σi) and Σi = I . In this condition, the er-
ror rate of Bayes optimal classification with ordered classes
µ1, . . . , µC can be expressed as follows.

J(w) =
2

C

C−1∑
i=1

Φ

(
−wTµi,i+1

2

)
(4)

where Φ(·) is the cumulative distribution function of a stan-
dard Gaussian distribution, wTµi,i+1 = wT (µi+1 − µi)
is the projected distance between the neighborly ordered
classes. The gradient of the error function is

∂J

∂w
= − 1

C

C−1∑
i=1

1√
2π

e(w
Tµi,i+1)

2/4µi,i+1 (5)

The Heissian of the error function is

∂2J

∂2w
=

1

4C
√
2π

C−1∑
i=1

e(w
Tµi,i+1)

2/4(wTµi,i+1)µi,i+1µ
T
i,i+1

(6)
Because the Hessian matrix is semi-definite in A, the objec-
tive function J(w) is apparently a convex function that can
be easily minimized.

However, this theoretically elegant criterion has two lim-
itations. First, this criterion becomes suboptimal when the
distribution of data are far from Gaussian, which is com-
mon in real-world situation. Second, more severely, this
criterion is not applicable for some predefined orderings,
on which the solution region is the origin. To address these
limitations, we propose a novel maximum margin criterion
for more general usage.

3.2. Maximum Margin Criterion

Let y = (y1, . . . , yC−1), where yi = wTµi,i+1, be a
vector in RC−1 to represent the distances between the near-
by class means given a certain ordered sequence of project-
ed class means. Assuming that the classification errors are
mainly caused by the k closest class pairs in the projected
subspace, and it is natural to seek the optimal subspace in
manner that maximizing the sum (average) of the k mini-
mum distances between the nearby class pairs. To facilitate

our discussion, define θ(y) = (y(1), y(2), · · · , y(C−1)) to be
the vector obtained by sorting the C − 1 components of y
in order, i.e., y(1) ≤ y(2) ≤ · · · ≤ y(C−1). Finally, for
k = 1, · · · , C − 1, we define Θk(y) =

∑k
i=1 y(i), the sum

of the k minimum components of y. Finally, the max-k-min
distance criterion for class separation is formulated as fol-
lows.

max
w

Θk(y) (7)

• By settling k = 1, the criterion guarantees the clos-
est pair of classes in the projected subspace is not too
close. This is reasonable when the classification errors
are mostly caused by a single closest pair of classes.
However, it is possible that the classification errors are
concurrently caused by several close pairs of classes.
Thus, the general errors may be increased in order to
separate the single worst pair of classes apart. In other
words, mapping the worst pair of classes overlapping
may improve on the overall performance. See the syn-
thetic data test in Section 4.1 for example.

• By settling k = C − 1, the criterion maximizes the
sum of all distance between all neighboring classes,
which is solely dependent on the first and last elements
of the ordered sequence of projected means. The al-
gorithm actually maximizes the projected range of all
classes, and this may be reasonable if all the between-
class distances are similarly close. When the between-
class distances are diverse, the criterion may empha-
size the large between-class distances and ignore the s-
mall ones, which is similar to what classical LDA does.

• By properly selecting k from {1, 2, 3, . . . , C − 1}, the
max-k-min distance criterion can be adaptive to vari-
ous class distributions. It is difficult to define a cri-
terion for selecting k without restrictive distributional
assumption. In our experiments, we empirically se-
lect k by minimizing the classification error in cross-
validation.

To facilitate our discussion, we define (z)+ =
max(z, 0), yi = wTµi,i+1 be the distance between
neighboring (projected) prototypes. Define θ(y) =
(θ1(y), θ2(y), · · · , θC−1(y)) to be the vector obtained by
sorting the C − 1 components of y in nondecreasing or-
der, i.e., θ1(y) ≤ θ2(y) ≤ · · · ≤ θC−1(y). Finally, for
k = 1, · · · , C − 1, define Θk(y) =

∑k
i=1 θi(y), the sum of

the k minimum components of y. In light of the formulation
in [15], it is easy to justify following lemma and theorem.

Lemma 1 ([15]). For any vector y ∈ RC−1, and k =
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1, · · · , C − 1

Θk(y) =
1

C − 1

(
k

C−1∑
i=1

yi −max
t∈R

C−1∑
i=1

(C − 1− k)(t− yi)+

+k(yi − t)+)
(8)

Moreover, t∗ = θk(y) is an optimizer of the above mini-
mization problem.

Theorem 2 ([15]). Given the collection of linear function,
{gi(w) = wT (µi+1 − µi)}C−1

i=1 , the problem of maximiz-
ing Θk(g(w)), the sum of the k smallest function is convex,
which can be formulated as a linear program as follows

max
(
kt−

∑C−1
i=1 ξi

)
subject to
ξi ≥ t− gi(w), i = 1, . . . , C − 1,
ξi ≥ 0, i = 1, . . . , C − 1,
wTw ≤ 1

(9)

3.3. Applications

3.3.1 LRA Based Zero-shot Learning

Consider N classes of interests. In the training stage, S of
the these classes are ‘seen’ classes for which training im-
ages are provided, while the remaining U = N − S class-
es are ‘unseen’, for which no training images are provided.
The S classes are described by the ranking order of the pres-
ence of a certain attribute. On the other hand, the U unseen
classes are described relative to one or two seen classes for
a subset of the attributes. For example, seen classes c

(u)
j

can be described as c(s)i ≻ c
(u)
j ≻ c

(s)
k for attribute am, or

c
(s)
i ≻ c

(u)
j , or c

(u)
j ≻ c

(s)
k , where c

(s)
i and c

(s)
k are seen

classes. In the testing stage, a novel sample is to be classi-
fied into any of the N classes.

Predicting the real-valued rank of all samples in the
training set allows us to transform the samples from xi ∈
Rn (observation space) to x̃i ∈ RM (attribute space), in
such a way that each sample i is represented by an M -
dimensional vector x̃i storing its ranking score for all M
attributes. Then, the Gaussian distribution based maxi-
mum likelihood classification is performed in the attribute
space. In the training stage, generative models c

(s)
i ∼

N
(
µ
(s)
i ,Σ

(s)
i

)
of each of the S seen classes are first com-

puted, then the models of the unseen classes are selected
by the rules defined in the well-known relative attributes
method [16].

Given a test sample x, the M -dimensional ranking score
vector x̃ is first computed, and then the class label is as-
signed by the maximum likelihood rule

c∗ = arg max
i∈{1,...,N}

P (x̃|µi,Σi) (10)

3.3.2 LRA Based Dimension Reduction for Classifica-
tion

Theorem 2 provides an efficient method to find the max-
k-min margin solution for any given ordered sequence of
the projected centroids η(1) ≤ η(2) ≤ · · · ≤ η(C) by solv-
ing a linear programming problem. The remaining prob-
lem is to determine which of all possible sequences pro-
vides the optimal solution, where the sum of k minimum
distances is maximized. Apparently, the number of pos-
sible sequences is C!, and two mirrored sequences, e.g.
η1 ≤ η2 ≤ · · · ≤ ηC and ηC ≤ ηC−1 ≤ · · · ≤ η1 re-
sult in the same solution. Moreover, one can filter out the
feasible sequence by detecting whether the convex region A
is the origin. In general, one need to solve smaller number
of linear programming problems with C!/2 being the upper
limit.

The one dimensional Max-K-Min projection algorithm
first searches the possible subproblems with feasible class
orderings, then solves them separately according to Theo-
rem 2, and finally finds the global optimum by comparing
the results of all subproblems. Specifically, the algorithm
can be summarized as follows:

• First, find the set Q of possible orderings of the class
means. This is easily achieved by selecting all those
sequences for which A is larger than the origin.

• Second, for each ordering qi in Q find that w(i) ∈ A,
which minimizes the sum of the k minimum distances
by using a linear programming algorithm (We use
CVX to solve the LP problem in our experiments).

• Finally, the optimal solution w to our problem is given
by

w = argmax
w(i)

Θk

(
g(w(i))

)
(11)

To find a subspace solution of more than one dimension,
we recursively apply our algorithm to the null space of the
previously obtained subspace. After applying the algorithm
described in the previous subsection, one obtains the first
subspace solution, which is denoted as w1. The optimal k
is selected by cross-validation with highest accuracy. The
null space of this first projection is denoted W⊥

1 . Now,
we can re-apply the same algorithm within this null space
W⊥

1 , obtaining the second optimal dimension w2. To do
this, we will first need to project the class means onto W⊥

1

and then calculate the next solution on this null space. The
2-dimensional subspace where the sum of k minimum dis-
tance is minimized is then given by the projection matrix
W2 = (w1, w2) with the usual constraint wT

1 w2 = 0. In
this way, our algorithm can be recursively applied to find
that d-dimensional solution from any m-dimensional space,
with d < min(m,C − 1).
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Figure 2. The LRA learning of ranking function of six normal distributions with the predefined ordering (black ≺ blue ≺ red ≺ green ≺
magenta ≺ light-blue). (a) three-dimensional scatter plot of six classes. (b) Bayes optimal 1D result . (c–g) show the class distributions in
the max-k-min optimal 1D subspace with k = {1, 2, 3, 4, 5}. (h) Dependence of error rate (using the nearest mean classification) on the
parameter k of the MM-LRA using the homogeneous Gaussian data set.

4. Experiments

4.1. Synthetic Data Test

This simulation is intended to serve as an illustrative
example which involves 6 homoscedastic Gaussian distri-
butions embedded in a 3-dimensional space with means
located at: (0, 0, 1)T , (0, 0,−1)T , (0, 4, 0)T , (0,−4, 0)T ,
(7, 0, 0)T , (−7, 0, 0)T , respectively, and covariance matri-
ces equal to one fourth of the identity matrix, i.e., Σ = I/4.
In our simulation, we randomly generated 500 samples
from each of these distributions. The class distributions of
these samples were shown in Fig. 2(a)

The solution of the ME-LRA is shown in Fig. 2(b),
which results in a about 8% error rate, which is the lower
bound of the error rate that one can be obtained in this data
set. Fig. 2(c–g) show the 1D representation obtained with
the MM-LRA algorithm for k = {1, 2, 3, 4, 5}. When the
algorithm maximizes the minimum distance with k = 1, the
intervals between neighboring class are seen to be uniform
so that the separation of all class pairs is considered. This
observation is consistent with Bian and Tao [2]. However,
k = 1 is not optimal for classification because the global
extent of the whole data is limited in this case. In the oth-
er limit, when the algorithm maximizes the global extent
of the data with k = 5, four of the six classes are large-
ly overlapped so the classification error becomes as high as
49%. This result is similar to the result of the classical LDA
that maximizes the scatter of the class mean. When k = 2,
MM-LRA considers both the class separation and the global
extent, and reaches the lowest classification error, i.e. 8%.

Fig. 2(h) shows the classification errors in the one-

dimensional subspace derived by different choice of k, and
one can see from the figure that k = 2 produces the best
performance. In general, the choice of k affects the classi-
fication error rate to large extent, and thus, for practical ap-
plications, it is important to use the cross-validation method
to select a suitable k for each subspace dimension. Note
that ME-LRA provides theoretically optimal solution on ho-
moscedastic Gaussian data, and MM-LRA approximate this
optimal result by controlling both class separation and glob-
al scale. Further, we can expect MM-LRA may be more u-
niversally valid than ME-LRA since it does not impose any
distributional assumption during the optimization.

4.2. Ranking Learning Results

Outdoor Scene Recognition (OSR) Dataset, which con-
tains 2688 images from 8 classes, and a subset of Public
Figure Face Database (PubFig), which contains 800 images
from 8 random identities (100 images per class) are used
to evaluate our approaches. A concatenation of the gist de-
scriptor and a 45-dimensional Lab color histogram is used
as our image features. The reference [16] provides more
details about the datasets, which include the binary mem-
berships and relative orderings of categories by attributes.
These were collected using the judgements of a colleague
unfamiliar with the details of that work.

For each attribute, we use 30 training images per class,
and the rest for testing. For an image-pair (i, j), in the
test set, we evaluate the learnt ranking function, and if
wTxi > wTxj , we predict i ≻ j, else i ≺ j. We imple-
ment LDA, linear binary SVM, modified ranking SVM to
learn the ranking function, to compare them with our pur-
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Table 1. The ranking function’s accuracy on various attributes on
Outdoor Scene Recognition and Public Figure Face Databases

Binary Rank ME- MM-
Attributes LDA SVM SVM LRA LRA
natural 92.25 90.74 94.36 94.03 94.04
open 68.48 84.54 90.97 89.88 89.92
perspective 78.87 78.22 85.78 85.17 85.45
large-objects 74.57 69.85 86.36 85.37 85.87
diagonal-plane 81.29 81.82 87.52 86.89 87.23
close-depth 72.96 86.89 88.70 83.38 86.56
masculine-looking 75.83 70.05 81.00 82.17 82.47
white 60.58 64.37 77.31 77.46 78.46
Young 78.40 74.48 81.05 81.46 82.02
Smiling 71.67 68.97 79.66 79.73 80.65
Chubby 60.94 61.65 76.14 75.85 77.24
visible-forehand 79.25 75.20 87.91 86.74 87.42
bushy-eyebrows 67.79 69.28 78.89 80.08 80.57
narrow-eyes 57.35 74.80 80.72 79.08 80.04
pointy-nose 58.11 68.75 74.84 77.35 78.64
big-lips 64.11 73.88 78.07 79.56 80.12
round-face 73.44 72.69 80.46 81.79 81.96
Average 71.52 74.48 82.93 82.71 83.45

posed Minimum Error-LRA and Maximum-Margin-LRA.
As shown in Table 1, the learnt ranking function’s accura-
cies of LRA are similar to the ranking SVM, confirming the
effectiveness of LRA on class-level relative attribute model-
ing. As expected, LRA is significantly better than LDA by
modeling of the relative strength of attributes. MM-LRA is
slightly better than ME-LRA, indicating the margin based
criterion is more suitable for real data sets.

4.3. ZeroShot Learning Results

We compare our approach to three baselines: The first
baseline is the direct attribute prediction (DAP) model of
Lampert et al. [12], which trains linear SVMs by trans-
ferring the binary supervision to training samples from the
seen categories. A test image x is assigned to a class ac-
cording to a naive bayes rule, where the posterior of each
attribute is approximated by the sigmoid function. The sec-
ond method, “score based relative attributes (SRA)” also
based on the scores of the linear SVMs as features, but use
generative modeling of seen classes and relative descrip-
tions of unseen classes as our approach. The final baseline,
the relative attribute (RA) method, uses the scores of a mod-
ified ranking SVMs to construct the attribute space, which
has demonstrated state-of-the-art zero-shot learning perfor-
mance [16].

We use 30 training images per class, and the rest for test-
ing, and report the mean accuracy over 10 random train/test
and seen/unseen splits. We study zero-shot learning accura-
cy . Fig. 4.3 show the zero-shot classification accuracy as
the number of unseen classes increases, and one can see that
the proposed LRA is similar to the ranking SVM method,
indicating the idea of LRA is effective to solve the zero-

0 1 2 3 4 5
10

20

30

40

50

60

70

80

# Unseen classes

A
cc

ur
ac

y

 

 
MM−LRA
ME−LRA
Rank−SVM
SRA
DAP

(a) OSR

0 1 2 3 4 5
10

20

30

40

50

60

70

80

# Unseen classes

A
cc

ur
ac

y

 

 
MM−LRA
ME−LRA
Rank−SVM
SRA
DAP

(b) PubFig

Figure 3. Zero-shot learning performance as the proportion of un-
seen classes increases. Total number of classes is constant at 8.
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Figure 4. Projections of the Image Segmentation data (testing set)
onto the two most discriminant feature vectors found by (a) LDA,
(b) Bayes optimal LDA, (c) LRA.
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Figure 5. Projections of the LandSat Satellite data (testing set) onto
the two most discriminant feature vectors found by (a) LDA, (b)
Bayes optimal LDA, (c) LRA.

shot learning problem. The difference between MM-LRA
and ME-LRA is not notable on both data sets. In general,
we can expect that LRA is more scalable than ranking SVM
to the problems with large number of classes, as it conducts
analysis only on the class centroids.

4.4. Dimension Reduction with A Small Number of
Classes

We evaluate the effectiveness of LRA1 on two data set-
s from the UCI Machine Learning Repository. The “Im-
age Segmentation” data set consists of 2,310 measurements
with 19 attributes from seven classes: brickface, sky, fo-
liage, cement, window, path, and grass. The data set is
divided into a training set of 210 images (30 samples per
class) and a 2,100 testing images (300 samples per class).
The “Landsat Satellite” data set consists of 6,435 measure-

1The minimum error criterion has been used by BLDA [9] for clas-
sification. Therefore, we only test LRA with maximum margin criterion
in the following classification experiments, and compare its performance
with BLDA.
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Table 2. Average Classification Error Rate by Nearest Mean Clas-
sifier (upper table) and Nearest Neighbor Classifier (lower table)
on Image Segmentation Data Set

Dim 1 2 3 4 5 6 Rank
LDA 49.39 31.21 15.71 11.04 9.74 8.53 5.60
GMSS 31.43 16.84 17.19 11.77 9.70 8.53 4.20
HMSS 32.47 21.21 15.54 10.95 9.91 8.53 4.40
aPAC 44.85 30.09 17.32 11.65 9.44 8.53 5.20
MMDA 49.05 19.70 14.68 12.90 8.87 8.53 4.20
BLDA 28.53 19.35 15.02 11.82 9.26 8.53 3.40
LRA 27.14 15.71 12.21 9.52 8.74 8.53 1.00

Dim 1 2 3 4 5 6 Rank
LDA 42.38 21.17 8.63 3.20 3.29 2.73 5.80
GMSS 31.22 14.16 7.84 3.85 3.90 2.73 5.20
HMSS 30.81 14.46 7.88 3.24 3.12 2.73 4.20
aPAC 41.90 21.82 7.10 3.20 3.16 2.73 5.00
MMDA 34.61 17.14 6.88 3.14 3.03 2.73 3.40
BLDA 26.84 13.77 5.93 3.38 3.16 2.73 3.20
LRA 27.97 9.91 4.33 2.94 2.60 2.73 1.20

Table 3. Average Classification Error Rate by Nearest Mean Clas-
sifier (upper table) and Nearest Neighbor Classifier (lower table)
on Landsat Satellite Data Set

Dim 1 2 3 4 5 Rank
LDA 51.48 26.92 16.95 16.29 15.79 5.00
GMSS 30.75 27.49 19.27 16.46 15.79 5.75
HMSS 34.16 23.98 17.86 16.18 15.79 4.50
aPAC 34.62 19.58 16.75 16.27 15.79 3.00
MMDA 45.53 23.01 17.34 15.85 15.79 4.00
BLDA 30.07 21.31 16.97 16.29 15.79 3.25
LRA 31.53 17.20 17.04 15.89 15.79 2.50

Dim 1 2 3 4 5 Rank
LDA 54.72 28.16 18.71 15.87 14.25 7.00
GMSS 38.25 27.22 17.94 15.66 14.25 5.25
HMSS 36.76 25.69 18.07 15.01 14.25 4.75
aPAC 40.45 21.77 16.29 14.27 14.25 2.75
MMDA 48.73 24.64 17.92 14.46 14.25 4.00
BLDA 35.77 24.94 16.55 14.98 14.25 3.00
LRA 36.61 20.46 16.03 13.98 14.25 1.25

ments with 36 attributes from six classes. The set includes
4,435 training samples and 2,000 testing samples.

Fig 4 and 5 show the 2D representations of the testing
samples obtained with LDA, BLDA, and LRA algorithm-
s, one can see from the figure that the two data sets dis-
play non-Gaussianity and heteroscedasticity. The represen-
tations of LDA display severe class separation problem, e-
specially on the Image Segmentation data set where three
of the seven classes are totally overlapped. Although BL-
DA reduce the class overlapping of LDA to some extent, its
2D representations seem to be far from optimal on these two
data sets whose class distributions are not Gaussian. In con-
trast, LRA provides dramatically separable 2D representa-
tions which are different from those of LDA and BLDA.
For quantitative comparison, we measure the classification
error using nearest mean classifier in these 2D subspaces.
As expected, LRA achieves notably lower error rates than

LDA and BLDA in both data sets, which indicates the pro-
posed Max-K-Min criterion is better than the Bayes crite-
rion based on restrictive distributional assumptions, when
applied to the real data sets.

For comprehensive comparison, we further combine the
training and test set together to conduct the fivefold cross-
validation tests and evaluate the classification performance
with varying dimensions. Each data set is divided into five
subsets, of which four subsets are used for training and the
remaining one for test. Six top-level linear discriminative
dimension reduction methods, namely LDA [7][17], GMSS
[20], HMSS [1], aPAC [13], BLDA [9], and MMDA [2],
together with the proposed LRA, were compared. Tables 1
and 2 summarize the average classification error rate of all
methods by using the nearest mean and the nearest neighbor
classifier, respectively. The parameters of LRA are selected
by 10-fold cross validation on the training data set.

For comparison purpose, we conducted a rank analysis
of the tested methods on each data set according to their per-
formance. Specifically, we calculate an average rank of the
used methods by averaging the rank of their performances
on the dimensionalities from 1 to C − 2 (columns of the
tables). It should be noted that all the tested methods have
the same performance when the dimensionality equals to
C − 1, because all discriminative information is contained
exactly by the C class means and the C dimensional mean
vectors are embedded exactly in a (C−1)-dimensional sub-
space. However, when subspace dimensionality is less than
C − 1, the sophisticated methods generally improve clas-
sical LDA. From these results, one can see from the tables
that LRA consistently has the best average ranking in all the
four test cases. In particular, on the nearest mean classifi-
cation of the Image Segmentation data set, LRA achieves
the average ranking of 1, suggesting it obtains the best so-
lutions on class separation on all feature dimensions. The
consistently better results of LRA over MMDA confirm our
intuition: Max-K-Min criterion improve Max-Min criterion
by considering both class separation and global scaling.

4.5. Dimension Reduction with A Large Number of
Classes

This experiment uses a well-know character recognition
data set, the United States Postal Services (USPS) database,
which contains 9,298 handwriting character measurements
of 10 classes. The database is divided into two separated
parts: a training set with 7,291 measurements and a test
set with 2,007 measurements. Each measurement is a 256
dimensional vector. We use entire USPS database to eval-
uate the performances of LRA, and compare it against L-
DA, heteroscedastic discriminant analysis (HDA) [10], a-
PAC, FLDA, weighted LDA (WLDA) [8], Heteroscedastic
LDA (HLDA) [4], Local Fisher Discriminant Analysis (LF-
DA) [19], oriented discriminant analysis (ODA) [3], Multi-
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Table 4. Classification Error Rate by Nearest Neighbor Classifier
on USPS Database

Dim 3 5 7 9 15 20 Rank
LDA 38.27 16.29 11.86 10.96 – – 5.50
aPAC 31.44 16.79 11.41 11.06 – – 5.25
HDA 35.18 25.16 19.88 17.34 – – 11.00
WFLDA 43.10 23.42 14.15 10.96 – – 8.75
FS-LDA 33.38 17.94 14.30 11.31 – – 7.00
LFLDA 34.73 18.09 13.35 11.01 8.82 7.42 6.50
HFLDA 35.18 23.47 17.79 12.81 9.47 8.27 10.50
ODA 39.83 26.17 16.36 11.62 10.60 9.70 11.50
MODA 39.50 28.50 15.76 10.32 10.27 9.37 9.50
GMSS 28.75 15.74 11.16 9.87 5.98 5.83 2.25
ERE 39.01 20.23 15.60 11.36 6.73 5.33 9.25
ERE+BLDA 30.34 16.29 10.26 8.92 6.48 5.33 2.75
ERE+LRA 29.60 14.85 10.16 8.87 6.43 5.33 1.25

modal oriented discriminant analysis (MODA) [3], GMSS,
Regularized Eigenfeatures and Extraction(ERE) [11].

In this experiment, LRA is applied in 20-dimensional
subspace derived by ERE, so that the error rates of LRA
and ERE are identical when the dimension is 20. As the dig-
it classification involves 10 classes, the number of possible
ordered sequences of projected means is upper bounded by
10!/2 = 1814400. To improve the efficiency of BLDA and
LRA, we use only the sequence of the projected means de-
termined by the dominant principal component of the class
means, instead of searching through all possible sequences.
Although this approximated method only considers a single
sequence of ordered class means, the resulting LRA/BLDA
still improves on ERE to a large extent. In particular, the
average ranking of ERE is boosted from 9.25 to 1.25 by us-
ing LRA for subspace selection, which indicates that LRA
has potential to enhance many other dimension reduction
methods.

5. Conclusion

We extend the classical linear discriminant analysis (L-
DA) technique to linear ranking analysis (LRA), by con-
sidering the ranking order of classes centroids on the pro-
jected subspace. Under the constrain on the ranking or-
der of the classes, two criteria are proposed: 1) minimiza-
tion of the classification error with the assumption that each
class is homogenous Guassian distributed; 2) maximiza-
tion of the sum (average) of the k minimum distances of
all neighboring-class (centroid) pairs. Both criteria can
be efficiently solved by the convex optimization for one-
dimensional subspace. Greedy algorithm is applied to ex-
tend the results to the multi-dimensional subspace. Experi-
mental results show that 1) LRA with both criteria achieves
state-of-the-art performance on the tasks of ranking learning
and zero-shot learning; and 2) the maximum margin criteri-
on is a potential discriminative subspace selection method,
which significantly reduces the class separation problem in
comparing with several representative extensions of LDA.
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