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Abstract—We develop a transform-invariant PCA (TIPCA) technique which

aims to accurately characterize the intrinsic structures of the human face that

are invariant to the in-plane transformations of the training images. Specially,

TIPCA alternately aligns the image ensemble and creates the optimal

eigenspace, with the objective to minimize the mean square error between the

aligned images and their reconstructions. The learning from the FERET facial

image ensemble of 1,196 subjects validates the mutual promotion between

image alignment and eigenspace representation, which eventually leads to the

optimized coding and recognition performance that surpasses the handcrafted

alignment based on facial landmarks. Experimental results also suggest that

state-of-the-art invariant descriptors, such as local binary pattern (LBP),

histogram of oriented gradient (HOG), and Gabor energy filter (GEF), and

classification methods, such as sparse representation based classification

(SRC) and support vector machine (SVM), can benefit from using the TIPCA-

aligned faces, instead of the manually eye-aligned faces that are widely

regarded as the ground-truth alignment. Favorable accuracies against the

state-of-the-art results on face coding and face recognition are reported.

Index Terms—Face alignment, face coding, face recognition, eigenfaces, princi-

pal component analysis
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1 INTRODUCTION

AS early as 1987, Sirovich and Kirby first found that faces can
be represented efficiently as a mean face plus a weighted linear
combination of the eigenvectors of a convariance matrix of face
images [1]. In this context, Turk and Pentland [2] developed a
well-known Eigenfaces method, where the eigenfaces define a
“face space” which drastically reduces the dimensionality of
the original space, and face detection and recognition are then
carried out in the reduced space. While undoubtedly successful
in appearance based recognition, the theoretical foundation for
the use of eigenfaces is less clear [3]. In practice, automatically
detected faces are often subjected to random transformations,
such as translation, rotation, and scaling, in images. In these
cases, the eigenface method possibly produces severely blurred
components that mostly account for the transformations and
ignore the more interesting and useful structure. To address
this problem, eigenface based approaches, as well as other
face-related studies [4], [5], [6], have aligned the faces by the
similarity transformation defined by landmarks such as two
eye centers. This handcrafted alignment makes the recognition
performance largely depend on the accuracy of landmark local-
ization [7], [8]. Further, even all the facial landmarks have been
precisely manually marked, it cannot guarantee that the

resulting aligned faces are optimized for recognition. In this
sense, a fundamental limitation of current face recognition
methods is the lack of the connection between the face align-
ment and face representation.

In this paper, we develop a transform-invariant PCA (TIPCA)
technique which aims to automatically learn the eigenface bases
by characterizing the intrinsic structure of the human faces that
are invariant to the in-plane transformations of training images.
To achieve this objective, TIPCA alternately aligns the image
ensemble and derives the optimal eigenspace in a manner that
the mean square error (MSE) between the aligned images and
their reconstructions is minimized. The optimization is effec-
tively solved by iteratively: 1) creating the eigenspace of the
aligned image ensemble using PCA; and 2) aligning each image
to the eigenspace using simultaneous inverse compositional
algorithm. The resulting TI-eigenspace defines a unified coordi-
nate system for various applications on face alignment, represen-
tation, and recognition.

The effectiveness of the TIPCA technique is successfully tested
on the large-scale FERET image ensemble involving the facial
images of 1,196 subjects. Experimental results validate the mutual
promotion between image alignment and eigenface coding, which can
eventually improve the recognition performance. On one hand,
improved alignment of the images leads to a compact image cod-
ing. On the other hand, the TI-eigenspace that excludes the trans-
form-related components helps precise image alignment. For the
recognition application, by aligning the training and test images to
the unified TI-eigenspace, the transformation variation among
images is minimized.

It should be noted that the alternating optimization between
eigenspace and alignment has been explored in image coding,
first developed by Schweitzer for holistic image [9], and then
extended for the active appearance model by Baker et al. [10].
However, due to the difficulty in avoiding bad local minima, their
works [9], [10] were limited to encode and align the small image
ensemble of the same face, object or scene, and were not applica-
ble to the multi-class recognition problem. Compared with previ-
ous works, the contributions of this paper are as follows.

� We develop a practical optimization procedure that is
effective to simultaneously encode and align a large
ensemble of thousands of faces under complex varia-
tions. The proposed low-to-high dimensional eigenspace
alignment strategy helps the alternating optimization of
TIPCA to find the good local minimum to accurately
align complex image ensembles. The MSE between the
aligned images and their reconstructions keeps decreas-
ing by more iterations, and, finally, is 30 percent lower
than that of the manually eye-aligned images.

� By aligning the gallery and probe images to a unified TI-
eigenspace, we develop a fully automatic recognition
system, and show that the recognition performance
keeps improving as more iterations are taken at the train-
ing stage of TIPCA, which provides a paradigm for
improving fully automatic recognition performance by
the close relationship among image alignment, represen-
tation, and recognition.

� Extensive experiments are conducted to demonstrate that
state-of-the-art invariant feature descriptors, such as local
binary patterns (LBP), histogram of the oriented gradient
(HOG) and Gabor, and classification methods, such as
sparse representation-based classification (SRC) and sup-
port vector machine (SVM), can benefit from using the
TIPCA-aligned faces, instead of the manually eye-aligned
faces that have been used by almost all the current studies
on face coding, recognition, and classification as the
ground-truth alignment.
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The rest of this paper is organized as follows: Section 2
describes the algorithm steps of TIPCA, Section 3 introduces the
applications on image alignment, representation, and recogni-
tion by TIPCA, and Section 4 provides experimental results and
discussions. Section 5 summarizes our conclusions and predicts
future works.

2 LEARNING TRANSFORM INVARIANT EIGENSPACE

2.1 Learning Eigenfaces by PCA

Eigenfaces rely on the observation first made by Kirby and
Sirovich that an arbitrary face image, denoted as I 2 IRd, can
be compressed and reconstructed by adding a small number of
basis images fj 2 IRd,

I ¼ mþ
Xm

j¼1

ajfj þ e; (1)

where m is the average image, f1; . . . ; fm are the ordered basis
images derived from an ensemble of training images using princi-
pal component analysis. e represents noise components. The pro-
cess of estimating the coding parameters a ¼ ða1; . . . ; anÞT is
equivalent to projecting the image onto a linear subspace, which
we can call the face space, i.e., aj ¼ fTj I � mð Þ. Turk and Pentland
recognized that this set of coding parameters themselves could be
used to construct a fast image matching algorithm.

In more detail, given a set of N example training images: Ii

where i ¼ 1; 2; . . . ; N , the formulation of eigenfaces is based on
a general principle that the mean square error between input
patterns and their reconstructions is minimized.

arg min
m; fj

1

N

XN

i¼1

min
ai

Ii � mþ
Xm

j¼1

aijfj

 !�����

�����

2
0
@

1
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While undoubtedly successful in appearance based recogni-
tion, the theoretical foundation for the use of eigenfaces is less
clear. Formally, PCA assumes the face images, usually normal-
ized in some way, such as co-locating eyes to make them com-
parable, are usefully considered as (raster) vectors [3].
However, the uncertainty on feature locations would makes
eigenface bases characterize the transform-related components,
rather than the intrinsic structures of the human face. In this
sense, the fundamental limitation of current methodology is
lack of the connection between the alignment of face images
and the construction of face space. How to align the face such
that the resulting face space could be as compact as possible is
an interesting question.

2.2 Transform-Invariant PCA

For the clearness of the formulation, we represent the
(unaligned) training images IiðxÞ and the basis images fjðxÞ in
the pixel form, where x ¼ ðx; yÞT is a column vector containing
the pixel coordinates, rather than the vector form. Let Wðx; pÞ
denote the parameterized set of possible transformations, where
p ¼ ðp1; . . . ; pnÞT is a vector of parameters. In TIPCA, the trans-
formed image is represented as the linear combination of a small
number of basis images as follows.

I Wðx; pÞð Þ ¼ mðxÞ þ
Xm

j¼1

ajfjðxÞ þ eðxÞ; (3)

where the warp Wðx; pÞ takes the pixel x in the basis image fjðxÞ
and maps it to the sub-pixel location Wðx; pÞ in the image I. Given
a set of unaligned facial images fIigNi¼1, we assume that the trans-
formed images, denoted by IiðWðx; piÞÞ, reside near on a low-
dimensional face space, and seek a set of basis images that

minimize the sum of distance from the transformed images to the
face space. In other words, the transform-invariant eigenfaces are
learned based on a modified principle that minimizes the mean
square error between transformed patterns and their reconstructions.

arg min
m; fj

1

N

XN

i¼1

min
pi ; ai

X

x

eiðxÞ
� �2

( )
; where

eiðxÞ ¼ IiðWðx; piÞÞ � mðxÞ þ
Xm

j¼1

aijfjðxÞ
" #

:

ð4Þ

As the introduction of the transform parameter pi for each training
image Ii, the minimization in (4) require more effort than comput-
ing eigenvectors of the covariance matrix. We solve it by iteratively
optimize fm;fjg and fpi; aig in turn, assuming where necessary
that estimates of the others are available. The training of TIPCA is
initialized by the “coarse” eigenspace derived by applying stan-
dard PCA on the detected faces, and then start to learn the trans-
form invariant eigenspace by alternately conducting the two
following steps:

Step 1) Eigenspace based Alignment, i.e., fix m, ffjgdj¼1 and
optimize fpi; aigNi¼1. Given m and ffjgdj¼1 that define a eigen-
space, we use the simultaneous inverse compositional (SIC)
algorithm1 to optimize fpi;aig for each image Ii respectively so
that the square error between the transformed image and its
reconstruction is minimized. Specifically, the SIC algorithm per-
forms a Gaussian-Newton gradient descent optimization simul-
taneously on the transform parameters pi and the coding
parameters ai. Let qi be the concatenated parameter vector of pi

and ai, and the Jacobian (steepest descent) images of (4) is

JðxÞ ¼ rf
@W

@pi1
; . . . ;rf

@W

@pin
; f1ðxÞ; . . . ;fmðxÞ

� �
; (5)

where rf ¼ rmþ
Pm

j¼1 a
i
jrfj. In each step, the increment of the

parameters is computed by

Dq ¼ �
�X

x

JT ðxÞJðxÞ
��1X

x

JT ðxÞeiðxÞ; (6)

where eðxÞ is the square error with current parameters. At each
step, the transform parameters are updated by Wðx; piÞ  
Wðx; piÞ �W�1ðx; DpÞ and the appearance parameters are
updated by ai  ai þ Da. After limited steps, the square error
between the transformed image and its reconstruction would
converge to a local minimum with respect to pi and ai.

Step 2) Eigenspace Update, i.e., fix fpigNi¼1 and optimize m,
ffjgdj¼1. If pi is known, we can compute the transform Wðx; piÞ
for each input image Ii. The problem then reduces to a trans-
formed version of principal component analysis. Specifically, we
transform each image onto the aligned coordinate to give
Ii Wðx; piÞ
� �

, stack it as a vector, and then perform PCA on
these vectors, update m to be the mean vector of the aligned
ensemble, and fj, j ¼ 1; . . . ; d to be the eigenvectors of the covari-
ance matrix with the d largest eigenvalues. Fig. 1 illustrates some
example mean vectors and eigenvectors (in the image form)
obtained during our experiment on the FERET database.

The alternating optimization of TIPCA terminates when the
MSE in (4) stop to reduce.

2.3 Complexity Control

The iterative “image alignment–eigenspace update” procedure
guarantees that the MSE can be reduced to be a local minimum.

1. The implementation details of the SIC algorithm, such as the image
warping method, are described in [11], and a Matlab toolbox and the exam-
ple code on a set of toy images are available in the supplementary material,
which can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2013.194.
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However, in complex problem with a large number of training
faces, there may be millions of parameters and the algorithm
tends to converge at a local minimum that is not good enough to
address the subsequent representation and recognition tasks. In
order to make TIPCA practical for real-world applications, we
control the complexity of the optimization by the two following
key strategies.

1) Low-to-high dimensional eigenspace for alignment. A important
problem in TIPCA is the choice of m for alignment, which takes
into account both the sufficient representation and the transform
removal. If m is too small, the eigenspace cannot characterize
enough variation of the image appearance that ensures the align-
ment algorithm to be converged. On the other hand, high dimen-
sional eigenspace of the poorly-aligned images would include
blur components that are misleading for alignment. To address
this dilemma, the alignment step should select a relatively low
dimension “blurred” eigenspace at initial iterations, which
ensures the converge and, at the same time, excludes most blur
components. Although the initial alignment is coarse, as the algo-
rithm iterates, the alignment could become more and more pre-
cise. The precise alignment of the image ensemble makes
principal eigenspace exclude the blur components, and thus
allows the next alignment step to select higher dimensional
“deblurred” eigenspace, which in turn benefit precise alignment.
In summary, as the coarse-to-fine eigenspace is used for align-
ment, the mutual promotion of alignment and eigenface coding
would iteratively reduce the MSE.

2) Similarity transformation for alignment. The goal of this paper
is to make PCA invariant to image-plane transformation, while
maintaining the clarity and spirit of eigenfaces and without
resorting to more complex models, such as active appearance
model [10] and morphable model [12]. Therefore, we prefer to
focus on the deformations with few degrees of freedom, i.e., sim-
ilarity transformations, which preserve linearity, angles and
ratios of lengths. These geometric information (the relationship
between facial features) are essential to the recognition of iden-
tity, gender, and expression. In addition, similarity transforma-
tion, which involves only four parameters, might simplify the
optimization of the alignment and thus increase the converge
rate for practical usages.

3 UNIFIED APPLICATIONS OF TRANSFORM-INVARIANT

PCA

The training stage of the TIPCA algorithm is an unsupervised
iterative learning procedure with two outputs: an ensemble of
aligned training images and a set of transform-invariant

eigenfaces. Taking the former as the final result, TIPCA can be
regarded as a approach to batch image alignment. More impor-
tantly, the set of TI-eigenfaces, which define a TI-eigenspace,
provides an invariant appearance model leading to broad appli-
cations. This section details how the TI-eigenspace can be
applied to align, encode, and recognize the unseen images.

3.1 TIPCA-Based Image Alignment

Image alignment aims to align a facial images, typically the out-
put of the face detector, to the transform-invariant eigespace
defined by the eigenfaces corresponding to the top m eigenvalues.
This problem is well established in the computer vision domain,
and we use the SIC algorithm because of its good converge rate
[13]. Specifically, for an input image I, the SIC algorithm simulta-
neously recovers the transform parameter p and the appearance
parameter a by solving following optimization problem:

min
p; a

X

x

I Wðx; pÞð Þ � mðxÞ þ
Xm

j¼1

ajfjðxÞ
" #( )2

: (7)

The complexity of the alignment algorithm increases dramatically
with a large m, but, fortunately, low dimensional TI-eigenspace,
e.g., m ¼ 20, is sufficient to perform precise alignment. For the rec-
ognition/classification problem, the gallery and test images should
be aligned to the same TI-eigenspace to make them comparable
within an unified coordinate.

3.2 TIPCA-Based Feature Extraction (Encoder)

Feature extraction aims to encode the image by identifying the
most expressive features, i.e., the eigenvectors with the largest
eigenvalues f1; . . . ;fd, while those with small eigenvalues are
assumed to contain noise and are cut off accordingly. Further-
more, in order to achieve the transform-invariant property, the
feature extraction of TIPCA are conducted by two separated pro-
cedures: 1) align the image by solving (7) with a selected dimen-
sion m, as detailed in Section (3.1), and 2) project the aligned
image vector onto the leading d TI-eigenvectors.

ai ¼
X

x

fTi ðxÞ I Wðx; pÞð Þ � mðxÞ½ �; i ¼ 1; . . . ; d: (8)

The number of principal components for subsequent reconstruc-
tion or recognition is typically user-defined. In face recognition,
the aligned image could be normalized to zero mean and unit
length for better invariance to illumination before projected to the
eigenspace.

3.3 TIPCA-Based Image Reconstruction (Decoder)

In the Eigenfaces method, the principal components and eigen-
vectors (eigenfaces) can be combined to reconstruct the image of
a face. Similarly, TIPCA can be used to reconstruct a face image
in the following way.

I Wðx; pÞð Þ � mðxÞ þ
Xm

j¼1

ajfjðxÞ: (9)

In addition, TIPCA also extracts the transform parameters p. The
original (unaligned) image can be recovered by backwards trans-
forming the reconstructed aligned image of (9) from the aligned
coordinate to the original coordinate as following:

IðxÞ � m W�1ðx; pÞ
	 


þ
Xm

j¼1

ajfj W�1ðx; pÞ
	 


; (10)

where a pixel x in the aligned images is mapped to the original
pixel W�1ðx; pÞ.

Fig. 1. The mean face and leading eigenfaces computed during the learning pro-
cess of TIPCA. (a) those of the initialization. (b) those of the second iteration. Inter-
estingly, the alternating optimization seems to “deblur” the basis images, which
suggests that the alignment step is effective to reduce the transform-related
components.
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3.4 TIPCA-Based Fully Automatic Face Recognition

By combining the TIPCA-based image alignment and feature
extraction, a fully automatic eigenfaces based recognition algo-
rithm can be readily figured out, as illustrated in Fig. 2. In the
training stage, a TI-eigenspace is first automatically learned from
an ensemble of training images, and the TI-principal components
of those gallery images are then extracted, as detailed in Sec-
tion 3.2, and stored. In the testing stage, the TI-principal compo-
nents of the probe image is first extracted. Finally, the nearest
neighbor classifier is used for classification. In our experiments,
the distances between two arbitrary feature vectors, ai;aj 2 IRd

used in our experiment are defined as follows:

dEd ¼ ðai � ajÞT ðai � ajÞ;
dMd ¼ ðai � ajÞTS

�1ðai � ajÞ;

dWc ¼
ðai � ajÞTS

�1ðai � ajÞ
kaik � kajk ; (11)

where S 2 IRd�d is the covariance matrix of the training data. For
the decorrelated principal components, S is diagonal and the diag-
onal elements are the (eigenvalues) variance of the corresponding
components. Ed, Md, Wc defines the euclidean distance, Mahala-
nobis distance, whitened cosine distance, respectively.

Beyond the direct matching of the eigenface codes, TIPCA
can benefit various recognition methods via precise image
alignment. By automatically learning the TI-eigenfaces from the
training ensemble, and aligning both the gallery and the probe
images to an unified eigenspace defined by TI-eigenfaces, any
subsequent recognition method would benefit from the precise
alignment. In this manner, TIPCA can be incorporated with most
state-of-the-art recognition algorithms, besides the eigenface based
approaches, and makes them operated in a fully automatic
way. Some applications will be demonstrated in the following
experiment section.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of TIPCA on image
alignment, coding, and recognition using 3,307 facial images of
1,196 subjects from the gray-level FERET database, which is a stan-
dard testbed for face recognition technologies [14]. The tested
images display diversity across gender, ethnicity, and age, and
were acquired without any restrictions imposed on expression,
illumination and accessories (See Fig. 3 for examples). Specifically,

the experiment follows the standard data partitions of the FERET
database:

� gallery training set contains 1,196 images of 1,196 people.

� fb probe set contains 1,195 images taken with an alternative
facial expression.

� fc probe set contains 194 images taken under different light-
ing conditions.

� dup1 probe set contains 722 images taken in a different time.

� dup2 probe set contains 234 images taken at least a year later,
which is a subset of the dup1 set.

Practical face recognition algorithms commonly consist of
two parts: alignment (normalization) and recognition. In the
influential FERET’97 evaluation, partially automatic algorithms
are given the coordinates of the eye centers for normalization
[14]. Since then, the eye-aligned facial images have become
the de facto standard for face recognition research. To ensure the
reproducibility of our results, the ground-truth eye coordinate
file of the FERET database is used, and the publicly available
CSU face identification evaluation system [15] was utilized to
provide the eye-aligned images, which registers the two eye cen-
ters at (30, 45) and (100, 45) in a 150 � 130 facial image. Fig. 3a
shows some eye-aligned faces which are used in our experiments,
and one can see from the figure that the intra-personal variabil-
ity of this database is complex. Even though we have used the
manually labelled eye coordinates of the FERET distribution, a
few faces are not well aligned due to the slight errors of manual
label (See the second row of Fig. 3a).

Our algorithm starts with facial images detected by the com-
mon face detectors. Viola and JonesA face detector,2 which out-
puts a square bounding box indicating the predicated center of
the face and its scale, is applied for its stable performance and
high speed. Given a detected face image of the width w, we crop
the face according to the eye locations3 of ð0:305w; 0:385wÞ and
ð0:695w; 0:385wÞ using the CSU face identification evaluation sys-
tem [15]. The cropped and scaled face images of a standard size
150 � 130, which subsequently is referred to as “detected faces”, is
illustrated in Fig. 3b. These detected faces are used for the ini-
tialization of TIPCA learning.

4.1 Learning Transform-Invariant Face Space

The alternating optimization of TIPCA starts with the detected
faces of the 1,196 gallery images, and the iterative learning of
our experiment involves 23 iterations. As the algorithm iterates,
the dimension of the eigenspaces used in the alignment step
increases from 20 to 100 as detailed in Fig. 4 a. As the detected
faces display natural variations on translations, scales, and rota-
tion angles, they are expanded by 30 pixels all around, forming a
210 � 190 input image, for the SIC algorithm to seek the optimal
similarity transformation. At each iteration, the SIC algorithm is
initialized with the 150 � 130 bounding box of the detected face,
and its maximum number of gradient descent steps is set to 20.

To monitor the effectiveness of the alternating optimization,
in each iteration, we reconstruct the aligned images by their first
100 eigenfaces, and compute the MSE of all the 1,196 training
images. Fig. 4b plots the MSE as a function of the number of iter-
ations, which monitors how the objective function value (4)
changes in each iteration. One can see from the figure that the
MSE keeps deceasing, which clearly shows the mutual promo-
tion of the eigenface coding and image alignment. In other

Fig. 2. The TIPCA based framework for fully automatic face alignment, representa-
tion, and recognition. In the training stage, the alternating optimization of TIPCA
reduce the transform-related component within the eigenspace progressively, and
finally output a transform-invariant eigenspace. In the test stage, the test images
are aligned and projected to the TI-eigenspace for representation and recognition.
State-of-the-art recognition algorithms can benefit from aligning the gallery and
probe images to a unified TI-eigenspace.

2. We use the OpenCV implementation of the Viola and Jones’s face detector
[16]. Since there is only one face in each image, we reduce the false alarms by
reserving the bounding box of the maximum size in each image. The detector
missed only six faces out of all the 3,307 images involved in our experiments, and
we have manually completed these six bounding boxes.

3. They are roughly the averaged locations of the two eyes of the typical
bounding faces determined by the VJ face detector.
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words, as the algorithm iterates, more and more intrinsic struc-
tures are represented by the TI-eigenfaces, and at the same time,
the transformation among the images are largely reduced by the
alignment step.

For comparison purpose, Fig. 4b also displays the MSE
between the eye-aligned images and the reconstructions by their
first 100 eigenfaces. As expected, the MSE of the eye-aligned
faces are lower than that of the detected faces (the MSE at itera-
tion 0), which explains the feasibility of eye-aligned faces for
image coding and recognition. However, eye-based alignment is
a heuristic approach without any theoretical justification, and
we find that TIPCA-aligned faces are better reconstructed than
eye-aligned faces after only one iteration. After 23 iterations, the
MSE of the TIPCA-aligned faces is about 30 percent lower than
that of eye-aligned faces.

To evaluate the generalization ability of TIPCA, in each itera-
tion, we align the probe images using the identical eigenspace
that used in the alignment step, then reconstruct the aligned
probe images by the first 100 eigenfaces (computed from the
aligned training images at that iteration), and finally compute
the MSE of the 2,111 probe images. The results are shown in
Fig. 4c. Comparing Figs. 4c and 4b, we find 1) the MSE of the
unseen probe images are higher than that of the training images;
2) the MSE of TIPCA-aligned faces is also notably lower than
that of eye-aligned faces; and 3) the MSE of the probe images
also generally deceases as the algorithm iterates. These results

indicate the TIPCA has improved generalization ability to repre-
sent facial images than traditional eigenfaces based approaches.

Besides the MSE, we also measure the quality of recon-
structed images by signal-to-noise ratio (SNR) [17]. Fig. 5 plots
the average SNR as a function of dimension, i.e., the number of
the components, used for reconstruction. When the dimension is
larger than 100, the SNR of training set increase linearly as the
dimension. For the test set, however, the SNR seems saturated.
Similar to the results on reconstruction error, TIPCA outper-
forms PCA (by about 0.5-0.8 dB) on both the training and the
testing image sets. On the unseen probe images, TIPCA achieves
about twice the coding efficiency of PCA. Specifically, TIPCA
uses 75 components to obtain an SNR of 7 dB while PCA
requires about 150 components. To reach a SNR of 8 dB, TIPCA
uses 250 components while PCA requires over 500.

To visualize the reconstruction effects of TIPCA, Fig. 6b
shows five reconstructed images of a probe image using the first
d (d = 20, 40, 60, 80, 100) TI-eigenfaces. The reconstructed images
become clearer as the number of eigenfaces is increased. For
comparison, Fig 6a shows the PCA based reconstruction on the
same (eye-aligned) probe image, where the same number of
eigenfaces, learned from the eye-aligned ensemble by PCA, were
also used. Clearly, Fig. 6b displays more appearance details,
such as the eyeglass frame and the texture of the beard, where
Fig. 6a are blur. Although optimal for coding in the least MSE
sense, PCA performs worse than TIPCA because of two possible

Fig. 3. Three types of aligned faces with the size of 150 � 130 used in our experiments. (a) manually eye-aligned faces which has been used in most studies on face rec-
ognition, gender and expression classification. (b) the detected faces, which are directly cropped and resized from bounding box of the face detector. (c) TIPCA-aligned
faces, which are generated by aligning the images to a unified low-dimensional TI-eigenspace.

(a) (b) (c)

Fig. 4. The iterative learning of TIPCA. (a) the increasing dimension of the eigenspace used for the alignment step as the algorithm iterates. (b) the MSE of aligned train-
ing images by 100 dimensional eigenspace as the algorithm iterates. (c) the MSE of aligned (unseen) probe images by 100 dimensional eigenspace as the algorithm iter-
ates. The horizontal red dashed lines in (b) and (c) indicate the MSE of the eye-aligned faces by traditional eigenface coding scheme.
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reasons: 1) the traditional eigenfaces characterize the transform-
related components that contain in the eye-aligned training
ensemble, and thus their linear combinations inevitably become
blur; and 2) although aligned by manually labelling, the input
(eye-aligned) image is not well aligned to the eigenspace. In
practice, one or two pixel alignment error may cause reconstruc-
tion to be blur, such as that in eye-glass frame. Fig. 3c shows
some examples of the precisely aligned faces by TIPCA which
ensures efficient coding and high-quality reconstruction.

4.2 Appearance Based Face Recognition

This experiment evaluates whether the transform-invariant cod-
ing of TIPCA can directly improve the recognition accuracy. As
in the common scheme, eigenfaces are constructed from a train-
ing set of face images and particular probe faces are recognized
by comparing the principal components (eigenface weights). The
number of principal components to remains is typically use-
defined. Recognition performance will suffer from insufficient
information if dimensionality is underestimated. On the other
hand, an overestimate of dimension will introduce noisy compo-
nents which also reduces performance [17]. Our empirical results
validated that optimal recognition performance is achieved with
a dimensionality roughly 150, using nearest-neighbor classifica-
tion based on three popular distance measures defined in (11),
namely the euclidean distance, the Mahalanobis distance, the
whitened cosine distance.

Table 1 shows the face recognition performance in 150 dimen-
sional eigenspace derived by PCA and TIPCA. PCA is evaluated
using both eye-aligned faces and detected faces. Besides the finally
optimized performance, we also test the intermediate results of
TIPCA after 1, 5, 9, 13, 17 iterations. The averaged accuracy over
four probe sets and the three distance measures keeps increasing as
more iterations of TIPCA learning is applied. This finding indicates
that the MSE in Fig. 4b and 4c is a effective indicator of the quality of
face alignment for recognition. After five iterations, the average
accuracy of TIPCA starts to surpass that of the eigenface approach
based on eye-aligned face. Finally, TIPCA outperforms PCA by a
margin of about 8 percent in average. The superiority of TIPCA
seems more apparent when the latter two distances are applied. For
instance, using the whitened cosine distance on the dup2 probe set,
TIPCA boosts the accuracy of PCA by about 15 percent (from 27.8 to
42.3 percent). This may be because the latter two distances, which
weight the low-variance components more heavily, makes the blur
components of PCA to be more harmful for recognition.

By observing the finally optimized performance with TI-
eigenspace learned from 23 iterations, we find that the perfor-
mance differences using different eigenspace dimensions for
alignment is not significant. This suggest that TIPCA can be
applied in an efficient way using low dimensional eigenspace for
alignment, while keeping highly accurate recognition perfor-
mance. By comparing the performance with equivalent #D and
different #I, one can find that better recognition performance can
be achieved by more training iterations.

4.3 Face Recognition with Local Descriptors

By reducing the transform-related components among the aligned
faces, TIPCA boosts the performance of appearance based recogni-
tion. However, the recognition accuracy is relatively low since the
TIPCA based appearance features still suffer from the intra-per-
sonal variations caused by illumination, expressions, and occlu-
sion. One possible solution is to apply local descriptors to
represent the aligned faces rather than the pixel. It is interesting to
evaluate the effectiveness of TI-Eigenfaces based alignment on face
recognition with local descriptors, which are robust to mis-align-
ment by themselves.

In this experiment, we compare the TIPCA-aligned face with
eye-aligned face for face recognition with three widely used
local descriptors:

� Local Binary Patterns [18]: The basic idea of LBPs is that
binary values are calculated from a pixel neighborhood
and the binary values are concatenated to one binary
value. The LBPU2

8;2 operator [18] is adopted in 7 � 7 pixel
cell, for each cell accumulating a local histogram of 59
uniform patterns over the pixels of the cell. The com-
bined histogram entries form the representation, result-
ing a 23,364 (22 � 18 � 59) dimensional feature vector.

� Histogram of the Oriented Gradient [19]: The basic idea is
that local object appearance and shape can often be char-
acterized rather well by the distribution of local intensity
gradients. The image is first divided into multiple 5 �
5 pixel cells, a local histogram of 18 signed gradient
directions over the pixels of the cell are accumulated for
each cell. For better invariance to illumination, “L2-Hys”
contrast-normalization [19] with the threshold 0.2 is
applied over each 10 � 10 pixel block. The combined
histogram entries form the final 14,040 (30 � 26 � 18)
dimensional feature vectors.

� Gabor Energy Filters (GEF) [20]: A family of five scales and
eight orientations of Gabor filters are adopted. Each energy
filter consists of a real and imaginary part which are
squared and added to obtain an estimate of energy at a

Fig. 6. Some reconstructed images based on (a) PCA and (b) TIPCA with the
dimension d ¼ f20; 40; 60; 80; 100g. Note that reconstructed region of PCA is manu-
ally defined by two eye centers, but that of TIPCA is automatically selected from
the detected face.

Fig. 5. The average signal-to-noise ratio as a function of number of eigenfaces
used for reconstruction.
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particular location and frequency band. The response of
each filter is downsampled by a factor of 64, and then nor-
malized to zeros mean and unit length. The combined
responses of the 40 filters result in a 12,160 (19 � 16 � 40)
dimensional feature vector.

The local feature vectors are first normalized to zero mean and
unit length, and then subjected to PCA for dimensionality reduc-
tion. The previous experiment has shown that the whitened cosine
similarity distance performs best for eigenface code, we therefore
apply it again to evaluate the performance of local feature based
eigenface code. Different from the appearance based recognition,
local feature based recognition does not suffer from low-variance
components. Hence, we select the full dimensional, i.e., 1,195-
dimensional, eigenface codes for recognition, and the results are
tabulated in Table 2. As expected, the recognition accuracies are
largely improved by 15-40 percent compared with the appearance
based results in Table 1.

TIPCA-aligned face based local descriptors achieve successively
increased accuracies as the algorithm iterates, start to outperform
eye-aligned face based descriptors after five iterations, and finally
boosts the average accuracy by about 3.5 percent. It is a significant
improvement considering that the accuracies using eye-aligned
face are already very high, especially on the fb and fc sets. The
superiority of TIPCA-aligned face seems more apparent on the

dup1 and dup2 probes. For instance, using HOG feature on the
dup2 probe set, TIPCA-aligned faces boosts the accuracy of eye-
aligned faces by about 11 percent (from 71.8 to 82.9 percent). Inter-
estingly, the precise alignment by TIPCA could alter the relative
recognition ability of the local descriptors. For instance, compared
with LBP and HOG, GEF performs better on the most challenging
dup2 probe set using eye-aligned faces, but becomes worse using
TIPCA-aligned faces. This may be because the GEF is more robust
to the mis-alignment by eye-based alignment, but become less dis-
criminative when precise alignment is available.

4.4 Leave-Out Test on Generalization Capability

Previous experiments use the full set of gallery images for the
training of TIPCA, which indicates all the identity-related infor-
mation is encoded in the TI-eigenspace. However, in the large-
scale face recognition/retrivial applications, it is difficult to col-
lect all the gallery subject for model training. This experiment
aims to test the generalization capability of TIPCA to align and
represent unseen subjects. Specifically, the 234 images of dup2
probe set involves 75 subjects. We leave the corresponding
75 gallery images out of the training stage of TIPCA, and then
compare the “leave-out” recognition performance with those
reported in previous experiments.

TABLE 2
Comparative FERET Recognition Rates of Detected Face, Eye-Aligned Face, and TIPCA-Aligned Face Using the Whitened

Cosine Distance Measure of Three Popular Local Descriptors

TABLE 1
Comparative FERET Recognition Rates of PCA and TIPCA Using Three Popular Distance Measures of 150 Principal Components

‘#I’ suggests the number of iterations taken in the training stage.
‘#D’ suggests the number of eigenspace dimensions used for alignment in the test stage.
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Table 3 reports the comparative FERET dup2 recognition
rates with/without the involved subjects for TIPCA training. It
is somehow surprising that the recognition accuracies of the
TIPCA-aligned faces are almost equivalent whether the recog-
nized subjects are involved in the training set or not. In the cases
where only 20 dimensional TI-eigenspace is used for alignment,
the “leave-out” recognition accuracies are even slightly better
than those of previous experiments. This extraordinary generali-
zation ability to align and represent unseen subjects endows
TIPCA the practical usefulness in the large-scale face recogni-
tion/retrivial applications. It is possible to build a subject-inde-
pendent TI-eigenspace by which generic facial images can be
efficiently and precisely aligned for accurate recognition.

4.5 Face Recognition via Sparse Representation

Sparse representation-based classification [21], [22] is a face recog-
nition breakthrough in recent years. To solve the misalignment
problem in SRC, a deformable sparse recovery and classification
(DSRC) [23] have used tools from sparse representation to address
the alignment problem given sufficient number of gallery images
per subject. In contrast, TIPCA builds an unified appearance model
for aligning all gallery subjects, regardless of the sample size per
subject, which might be a good alternative for DSRC in the under-
sampled situation. Therefore, it is interesting to combine TIPCA-
based alignment and SRC-based recognition,4 and compare its per-
formance with DSRC.

For comparison purpose, we also apply SRC to the eye-
aligned faces and the detected faces. For a fair comparison, all
the aligned faces are all downsampled to 75 � 65 to be compati-
ble with those used in [23]. The face recognition performance of
SRC using the four alignment methods is tabulated in Table 1,
which shows that the best performance on three of the four
probe sets is achieved using TIPCA-based faces. DSRC performs
better than TIPCA+SRC only when expression variation (fb set)
is presented. In contrast, using TIPCA-aligned faces (#I=23,
#D=20) achieves substantially improved accuracy (about 6 to
18 percent) than other alignment methods on the fc, dup1, and
dup2 probe sets. This suggests that TIPCA constructs an unified
appearance model that is more robust against the complex

variations of the facial appearance. Additionally, by comparing
Table 4 with Table 1, we find that SRC performs better than the
eigenface based approaches with various distance measures.
This indicates that the sparsity assumption of SRC indeed pro-
vides some superiority over traditional appearance based
approaches. In particular, with the precise alignment by TIPCA,
the superiority of SRC becomes more notable.

4.6 Preliminary Results on Gender Classification

Besides the identify recognition, it is also useful to extract cate-
gorical information from faces, such as gender or ethnicity.
Makinen and Raisamo presented a systematic study on gender
classification with automatically detected and aligned faces [5].
One of the findings was that current automatic face alignment
methods, such as AAM [24] and integral projection [25], perform
worse than the manually located eye-based alignment for gender
classification. Therefore, we evaluate whether the TIPCA based
alignment can be better than manually located eye-based align-
ment for gender classification. We follow the training and testing
partitions5 of Makinen and Raisamo [5]. There are 304 training
images (152 males/152 females) and 107 test images (60 males/
47 females). We compare the performance of eye-aligned faces
and TIPCA-aligned faces (#I = 23, #D = 40). Further, as the gen-
der classification is related to image resolutions, we resize the
aligned images by factors from 0.05 to 1, with an interval of 0.05,
to better examine the quality of image alignments. Classification
is performed by support vector machine,6 which is widely
regarded as the best gender classifier, and the resulting accura-
cies are illustrated in Fig. 7. TIPCA based alignment improves
manually located eye-based alignment for gender classification
by an accuracy of 1-5 percent under varying image resolutions.

To evaluate the generalization ability against the uncontrolled
lighting condition, we further test the gender classification accu-
racy on 200 images (100 males/100 females, one image per sub-
ject) from the FRGC uncontrolled image sets. Note that both the
TI-eigenspace (#I = 23, #D = 40) and the SVM model are learned
from the FERET database. Fig. 7 shows that cross-database classi-
fication performance on FRGC database drops to 70–75 percent.

TABLE 3
Comparative FERET dup2 Recognition Rates with/without the

Involved Subjects for TIPCA Training

4. The Homotopy method is applied to solve the ‘1-minimization problem
with the regularization parameter � ¼ 0:003. The source code was downloaded at
http://www.users.ece.gatech.edu/	sasif/homotopy/.

TABLE 4
Comparative FERET Recozgnition Rates on Differently

Aligned Faces Using SRC

5. The lists of the training and test images were downloaded from http://
www.sis.uta.fi/	em55910/data sets/.

6. The LIBSVM implementation [26] of linear C-SVM is applied, and ten-fold
validation on the training set are used to select the optimal parameter C from
f1; 2; . . . ; 20g.

Fig. 7. The gender classification rate of SVM as a function of image resolution
using three image alignment methods. The full resolution of the image is 150 �
130 at the scale of 1.
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Although the training set of does not contain uncontrolled illu-
minations, TIPCA aligns the FRGC uncontrolled images pre-
cisely, as shown in Fig. 8. As a result, the accuracies on TIPCA-
aligned faces are comparable to those on the eye-aligned faces at
all resolutions. It should be noted that the main concern of our
work is face recognition, and these preliminary results are only
aimed to show some other potential applications of TIPCA. To
design the dedicated protocol for gender classification, we refer
the reader to the recent work of Grosso et al. [27].

4.7 Computational Issues

Table 5 enumerates the CPU time of the training process (with
different numbers of iterations) of TIPCA on the 1,196 images
using our C++ implementation on a PC with Quad Core
2.80 GHz Pentium CPU and 4 GB memory. In particular, train-
ing with 23 iterations takes about 8.74 hours. Although this
training process is relatively slow, it is offline, fully automatic
(avoid tedious manual labeling), and scalable to a huge number
of training images by parallelized training. Because over 99 per-
cent computational cost focuses on the alignment step which is
independent for each training image, one can easily implement
training parallelism by distributing the alignment step to multi-
ple machines. At each iteration, one central machine collects the
aligned faces for updating eigenspace, and duplicates the
updated eigenspace on other machines.

The applications of TIPCA are efficient. Because TIPCA
builds a unified TI-eigenspace for aligning both gallery and
probe images, the alignment time per image is not related to the
number of images per gallery subject or the number of subjects
involved in the system. The alignment time per image depends
only on the dimension of eigenspace used. As enumerated in
Table 5, alignment with 20 dimensional eigenspace takes only
0.24 seconds, but the time increases to 3.25 seconds if 100 dimen-
sional eigenspace is used, using our C++ implementation. Fortu-
nately, our automatic alignment method can surpass manually
eye-alignment with 20 dimensional TI-eigenspace, and thus the
computational cost is acceptable for most applications, even for
some real-time applications.

5 CONCLUSION

The experiments suggest a number of conclusions:

1) The proposed TIPCA technique is effective to automati-
cally learn a set of eigenfaces that characterizes intrinsic
structure of the faces from a large set of training images
with various in-plane transformations. By removing the
transform-related components, the MSE between the
TIPCA-aligned images and their reconstructions is
about 30 percent lower than that of the manually eye-
aligned images.

2) There is a close relationship among alignment, repre-
sentation, and recognition: Image alignment and eigen-
face representation mutually promote each other, which
can eventually improve the image reconstruction and
recognition performance.

3) State-of-the-art invariant descriptors and classification
methods can benefit from using the TIPCA-aligned faces,
instead of the eye-aligned faces, in the applications such as
face recognition and gender classification.

4) The TI-eigenspace can define a subject-independent coor-
dinate for face alignment. Provided that the number of
training images are sufficiently large, TIPCA provides
equivalently precise alignment for the images from seen
(training) and unseen subjects.

5) A considerable amount of transform-related components
exist in the eye-aligned face ensemble, even though the
eye centers are manually located. The relatively high
MSE, low SNR, low face recognition/gender classifica-
tion accuracies suggests that the eye-aligned faces are far
from optimal for face processing. Although these eye-
aligned faces have been used by almost all the current
studies on face coding, recognition, and classification as
the ground-truth alignment, TIPCA based alignment can
improve its performance to a large extent.

We should point out that TIPCA is shown to be effective only
for the frontal faces with in-plane transformation. Current algo-
rithm is likely to break down under out-of-plane pose changes,
and so new transformation models are needed to support the algo-
rithms presented in this paper. We are currently investigating the
possibility of aligning and representing the 3D face using the meth-
odology of TIPCA.
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